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Abstract

In this work, we present a nonparametric Bayesian method for multivariate volatil-
ity modeling. Our approach is based on postulation of a novel mixture of multi-
output heteroscedastic Gaussian processes to model the covariance matrices of
multiple assets. Specifically, we use the Pitman-Yor process prior as the non-
parametric prior imposed over the components of our model, which are taken as
multioutput heteroscedastic Gaussian processes obtained by introducing appropri-
ate convolution kernels that combine simple heteroscedastic Gaussian processes
under a multioutput scheme. We exhibit the efficacy of our approach in a volatility
prediction task.

1 Introduction

In this work, we aim to address the problem of appropriately modeling the dynamic covariance ma-
trices for high-dimensional vector-valued observations using Gaussian processes. Indeed, existing
Gaussian process models typically make two rather implausible assumptions: (i) they assume a con-
stant (noise) variance in their prior configuration, thus failing to capture the dynamic nature of the
variance in the modeled data; and, (ii) they usually consider that the modeled vector-valued outputs
consist of independent components, thus neglecting the covariance structure in the modeled data.

Approaches that allow for modeling the dynamic covariance matrices (volatility) for high-
dimensional vector-valued observations are essential in many real-life applications. One character-
istic area where volatility models are especially important is econometrics: the price of essentially
every derivative security is affected by swings in volatility. Indeed, ARCH [5], and, more generally,
GARCH [3] models comprise the most popular family of methods used for predicting the volatili-
ties of returns on equity indices and currency exchanges [12, 7]. Multivariate volatility models can
be used to understand the dynamic correlations (or co-movement) between equity indices, and can
make better univariate predictions than univariate models.

Gaussian process (GP) models comprise one of the most popular Bayesian methods for regression,
function approximation, and predictive density estimation [6]. Despite their significant flexibility
and success in many application domains, GPs do also suffer from several limitations. To begin
with, most GP approaches assume that the modeled vector-valued outputs consist of independent
components, thus totally neglecting the actually existing covariance structure. GP models with
convolved kernels have been recently proposed to resolve these shortcomings (see, e.g., [1]).
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In addition, most existing GP formulations assume that the prior (noise) variance is a constant, thus
failing to incorporate in their prior assumptions the dynamic nature of the variance in the modeled
data. Recently, a heteroscedastic GP approach has been proposed in [8], in an effort to resolve these
issues. In that work, a scalar-valued (single-output) GP is postulated, where the noise variance is
considered to depend on the (multivariate) input observations of the model, with this dependence
modeled by means of an additional, separately postulated GP model.

Finally, when dealing with tasks entailing non-stationary covariance functions, multi-modal output,
or discontinuities, specifying appropriate priors and performing learning in GP models tends to
become considerably cumbersome, if at all possible. To alleviate these issues, several researchers
have considered postulating ensembles of GPs, which either divide the input space into segments,
and train a different GP on each one of these segments, or obtain non-parametric mixture model-like
ensembles of GPs, with suitable mixing priors, e.g. Dirichlet processes [2], or Pitman-Yor processes
[11] (see, e.g., [13, 10, 9]).

Inspired by these advances, in this paper we propose a Non-Parametric Mixture of Multi-Output
Heteroscedastic Gaussian Processes for Volatility Modeling. Our method comprises the postulation
of a nonparametric Bayesian model based on the introduction of a Pitman-Yor process prior over the
space of possible Gaussian processes with input variables in the whole input space considered each
time. In addition, each one of the postulated component GPs uses a suitable convolved kernel, to
allow for capturing the covariance structure in the output variables of the model, which most existing
GP formulations neglect to a great extend. Finally, for each one of the postulated component mixture
GPs, a dynamic noise covariance is assumed, modeled by means of an additional postulated GP;
that is, the mixture component GPs in our model are considered of an heteroscedastic nature, which
allows for effectively capturing the volatility in the modeled data. We experimentally exhibit the
efficacy of our approach.

2 Proposed Approach

Let us consider N multidimensional input vectors x =
[
x1

T ,x2
T , . . . ,xN

T
]T

with cor-

responding multidimensional output vectors y =
[
y1

T ,y2
T , . . . ,yN

T
]T

, where yn =

[y1 (xn) , y2 (xn) , . . . ,yM (xn)]
T . We assume that

ym (xn) = f cm (xn) + rcm (xn) ∀m = 1, . . . ,M (1)
and

rcm (xn) = eg
c
m(xn) (2)

In the above equations, the index c refers to the component index of a postulated mix-
ture model. Let us also introduce the notation rc =

[
rc1

T , rc2
T , . . . , rcN

T
]T

and rcn =

[rc1 (xn) , r
c
2 (xn) , . . . , r

c
M (xn)]

T . Then, definition of our model comprises the assumptions:

p (yn|xn, znc = 1) = N
(
yn|fc

n,R
c
n

)
(3)

p (fc|x;φ) = N
(
fc|0,Kc

f,f

)
(4)

p (gc|x;θ) = N
(
gc|µc

01,K
c
g,g

)
(5)

where we denote Rc
n = diag

(
rcn
)
, gc =

[
gc1

T , gc2
T , . . . , gcN

T
]T

, gcn =

[gc1 (xn) , g
c
2 (xn) , . . . , g

c
M (xn)]

T , fc =
[
fc
1
T ,fc

2
T , . . . ,fc

N
T
]T

, and fc
n =

[f c1 (xn) , f
c
2 (xn) , . . . , f

c
M (xn)]

T .

In the above equations, the Kc
f,f and Kc

g,g are Gram matrices defined over the sets of input ob-
servations x. To allow for capturing the covariance structure between the modeled outputs, we use
convolved kernel functions, similar to [1]. We let

{Kf,f}(m−1)×N+n,(s−1)×N+l = Cov {fm (xn) , fs (xl)} (6)
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{Kg,g}(m−1)×N+n,(s−1)×N+l = Cov {gm (xn) , gs (xl)} (7)

where

Cov {fm (xn) , fs (xl)} =
R∑

r=1

ˆ ∞
−∞

kfmnr (xn − z)
ˆ ∞
−∞

kfslr (xl − z′) kur,ur (z, z
′) dz′dz (8)

Cov {gm (xn) , gs (xl)} =
R∑

r=1

ˆ ∞
−∞

kgmnr (xn − z)
ˆ ∞
−∞

kgslr (xl − z′) kur,ur
(z, z′) dz′dz (9)

and the k(·, ·) are autoregressive kernels of order one (AR(1)). Finally, for the variables znc we use
a Pitman-Yor process prior, under a stick-breaking construction:

p (znc = 1|v) = πc (v) (10)

πc (v) = vc

c−1∏
j=1

(1− vj) ∈ [0, 1] (11)

p (vc|α) = Beta (1− δ, α+ δc) (12)
We conduct inference for our model using the variational Bayesian paradigm, which results in simple
and efficient predictive posterior expressions, by introducing a truncation threshold C (maximum
allowed number of mixture components), such that πc (v) = 0 ∀c > C.

3 Experiments

To show the efficacy of our approach, we apply it to perform volatility modeling and forecasting in
financial return time series. Asset return at time t, y(t), is defined as the one-step differential of the
price p(t) of an asset, i.e. y(t) , p(t)−p(t−1), while volatility is defined as the standard deviation
of a financial return series at time instant t given the information available at time t− 1.

In our experiments, we work with the Global Large-Cap Equity Indices of the period 1998-2003,
available in the Econometrics Toolbox of MATLAB. This dataset comprises daily return series for
M = 6 assets over a 5-year period. We postulate our model with its input driven by the one-
step-back asset return values y(t−1) = [ym(t−1)]Mm=1, and its output comprising the return series
y(t). To remain consistent with the existing literature, we adopt the typical assumption of zero-mean
return series, setting f = 0 in our model. Note though that we could as well relax this assumption,
to allow for our model to capture drifts in the mean of the return series.

We conduct model training over windows of 120 days; this procedure is repeated every 7 days, i.e.
we retrain our model using sliding windows 120 values-wide with overlap of 7 values. In each case,
prediction is performed one, seven, and 30 days ahead. As our performance metric, we use the MSE
between the predicted volatility and (i) the squared returns, and (ii) the squared standard deviation
over the employed sliding windows. These are two of the few consistent ways to measure volatility,
as discussed in [4].

To obtain some comparative results, we also evaluate the VHGP model of [8] in the same task. Our
considered competitor consists a popular approach that yields state-of-the-art results in financial
return series volatility modeling. Our results are provided in Tables 1 and 2 for the maximum
allowed number of mixture components (variational truncation theshold) equal to C = 5 and 10. As
we observe, our approach offers a very significant improvement over its competitor, approximately
of one order of magnitude.

We would like to mention that we could obtain a much larger improvement by setting the truncation
level higher, but this would be quite cumbersome, due to the computational time required. Our
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Table 1: Squared returns MSE performance obtained by the evaluated methods.

Method One-day prediction Seven-day prediction 30-day prediction
VHGP 9.87× 10−7 1.01× 10−6 1.02× 10−6

Proposed Approach: C = 5 4.79× 10−7 4.62× 10−7 4.87× 10−7

Proposed Approach: C = 10 3.78× 10−7 3.65× 10−7 3.93× 10−7

Table 2: Sliding window variance MSE performance obtained by the evaluated methods.

Method One-day prediction Seven-day prediction 30-day prediction
VHGP 1.28× 10−6 1.27× 10−6 1.23× 10−6

Proposed Approach: C = 5 4.54× 10−7 4.20× 10−7 4.17× 10−7

Proposed Approach: C = 10 2.22× 10−7 1.99× 10−7 2.08× 10−7

ongoing research efforts are targeted at coming up with suitable sparse approximation techniques
that would allow for increasing the scalability of our method.
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[1] Mauricio A. Álvarez and Neil D. Lawrence. Computationally efficient convolved multiple
output gaussian processes. Journal of Machine Learning Research, 12(5):1459–1500, 2011.

[2] C. Antoniak. Mixtures of Dirichlet processes with applications to Bayesian nonparametric
problems. The Annals of Statistics, 2(6):1152–1174, 1974.

[3] T. Bollerslev. Modeling the coherence in short-term nominal exchange rates: A multivariate
generalized arch approach. Review of Economics and Statistics, 72:498–505, 1990.

[4] C.T. Brownlees, R.F. Engle, and B.T. Kelly. A practical guide to volatility forecasting through
calm and storm, 2009. URL http://ssrn.com/abstract=1502915, 2009.

[5] R. F. Engle. Autoregressive conditional heteroscedasticity with estimates of the variance of
united kingdom inflation. Econometrica, 50(4):987– 1007, 1982.

[6] D. Gu and H. Hu. Spatial gaussian process regression with mobile sensor networks. IEEE
Transactions on Neural Networks and Learning Systems, 23(8):1279 – 1290, 2012.

[7] P. R. Hansen and A. Lunde. A forecast comparison of volatility models: Does anything beat a
garch(1, 1). Journal of Applied Econometrics, 20(7):873–889, 2005.

[8] Miguel Lázaro-Gredilla and Michalis Titsias. Variational heteroscedastic Gaussian process
regression. In Proc. ICML, 2011.

[9] L.Xu, M.I.Jordan, and G.E.Hinton. Analternative model for mixtures of experts. In Advances
in Neural Information Processing Systems, volume 7, pages 633–640. MIT Press, 1995.

[10] Edward Meeds and Simon Osindero. An alternative infinite mixture of Gaussian process ex-
perts. In Advances in Neural Information Processing Systems, volume 18, pages 883–890.
MIT Press, Cambridge, 2006.

[11] J. Pitman and M Yor. The two-parameter Poisson-Dirichlet distribution derived from a stable
subordinator. In Annals of Probability, volume 25, pages 855–900, 1997.

[12] S.-H. Poon and C. W. Granger. Practical issues in forecasting volatility. Financial Analysts
Journal, 61(1):45–56, 2005.

[13] C.E. Rasmussen and Z. Ghahramani. Infinite mixtures of Gaussian process experts. In In
Advances in Neural Information Processing Systems, volume 14, pages 881–888. MIT Press,
2002.

4


