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1. Problem
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Is “Pittsburgh” 
a city?
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Approximations:
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f̂1 f̂2 · · · f̂N

Orthographic features 
of the noun phrase

Context of the noun 
phrase

There exists a binary function     that we do not know. Instead, we have a 
set of function approximations to that function and we want to know how 
accurate they are.
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Using only unlabeled data we can measure consistency but not 
correctness. So:

consistency

correctness

Does this 
implication hold?

If yes, under what 
conditions?

2. Approach

Correctness definition:
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Error Rate: The probability over                       of disagreeing with the 
correct output label. 
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Given unlabeled input data,                    , we observe the sample 
agreement rates:
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Consistency definition:
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3 functions that make independent errors:
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3 unknowns
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where                       ,                                    with             
and:

i 2 {1, 2, 3} j, k 2 {1, 2, 3}\i j < k

Independent errors Too strong assumption We do not make it

But we end up with more unknowns than equations

Constrained Optimization Problem

Objective FunctionAgreement Rates Equations
Equality Constraints

Minimize the dependence between the error 
rates:

Relaxes the independence assumption
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Inequality constraints:

e{i,j}  min
�
e{i}, e{j}

 {

Agreement rate for a bigger set of functions:
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Objective function for a bigger set of functions:

eA  min
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Maximum likelihood2
Likelihood definition: L (e) = PD
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1. All of the functions agree with each other. 
2. The functions can be split into two non-empty groups: those that 

output 1 and those that output 0.

One Clique Case

Two Cliques Case

For each sample,      , we have two cases:Ŷ s

where     contains all of the functions. 
That is:

C

One Clique Case

The probabilities here are 
computed in the same way 
as for the agreement rates.
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Two Cliques Case
Either all function in clique 1 (    ) make an error and 
all functions in clique 2 (    ) are correct:

C1
C2

Or, the opposite:

The two events are mutually exclusive and so:
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We add a prior:

3. Experiments

NELL Data Set1

4 logistic regression classifiers using different 
features:

ADJ: Adjectives that occur with the NP 
CMC: Orthographic features of the NP 
CPL: Phrases that occur with the NP 
VERB: Verbs that appear with the NP

Task: Predict whether a noun phrase (NP) 
belongs to a category (e.g. “city”)

Category # Examples
animal 20,733

beverage 18,932
bird 19,263

bodypart 21,840
city 21,778

disease 21,827
drug 20,452
fish 19,162
food 19,566
fruit 18,911

muscle 21,606
person 21,700
protein 21,811

river 21,723
vegetable 18,826
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True error rates (estimated from labeled data) Error rates estimated from unlabeled data

3 functions under independence assumption: 2.82x10-2.

We report the mean absolute deviation (MAD) between: 
• True error rates (estimated from labeled data) 
• Error rates estimates from unlabeled data

All Data Samples 50 Data Samples
Ind. Pair. All Ind. Pair. All

AR 0.49 0.31 0.29 0.82 0.39 0.40
MLE 2.77 2.19 1.84 20.06 19.96 15.42
MAP 1.54 1.30 1.08 13.11 15.17 11.14

N functions without that assumption:

Brain Data Set2
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ell Task: Find which of two 40 second long story passages corresponds to an 
unlabeled 40 second time series of fMRI neural activity

1,000 labeled samples for 
11 brain regions

8 classifiers using different text 
representation:

• Number of letters in each word: 
• Parts of speech: 
!
• …

… They were hoping for a reason to fight 
Malfoy …

… Harry had heard Fred and George 
Weasley complain …

Passage #1 Passage #2

… 4   4   6   3   1   6   2   5   6 … … 5   3   5   4   3   6   7   8 …
… PRP    VBD    VBG    IN    DT    NN    
TO    VB    NNP …

… NNP    VBD    VBN    NNP    CC    
NNP    NNP    VB …

… …{

Which passage corresponds 
to this fMRI recording?

True error rates (estimated from labeled data) Error rates estimated from unlabeled data
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The more functions we have, the better the estimates we obtain!

Pairwise Agreement Rates All Agreement Rates
Ind. Pair. All Ind. Pair. All

MAD 4.40 4.06 1.90 4.36 4.14 2.01

Runs 8 times faster 
for 8 classifiers and 

performs better! ⇢ All agreement rates equations

8 classifiers
10 classifiers
15 classifiers

Pairwise agreement 
rates equations

Rest of agreement 
rates equations

High order sample agreement rates are often bad 
estimates of the actual agreement rates

4 Classifiers 8 Classifiers
Ind. Pair. All Ind. Pair. All

AR 10.97 6.60 6.50 4.36 4.14 2.01
MLE 10.60 8.34 7.64 32.02 12.33 4.50
MAP 9.61 18.19 11.16 27.95 18.60 7.26
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