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1. Gibbs Sampling Equations
In this section we provide the equations necessary to per-
form Gibbs sampling over the models defined in our paper.
1.1. Coupled Bayesian Error Estimation
The conditional probabilities we use during the first, col-
lapsed sampling phase are as follows:
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1.y evaluates to one if its subscript’s argument statement is
true and to zero otherwise, and B(-, -) is the Beta function.

After that phase, we start sampling the error rates along
with the rest of the variables and store the samples we ob-
tain. During that second phase, we use the following con-
ditional probabilities:
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In the case of missing data the conditional probability of
the simple error estimation model can be used, which is
provided in our paper.
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1.2. Hierarchical Coupled Bayesian Error Estimation

The conditional probabilities we use during the first, col-
lapsed sampling phase are as follows:
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where, noting that our previous definitions for a?k and Bfk
can also apply to sets over functions, j, in the following
way:
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where j = {j : zqu =t}

After that phase, we start sampling the error rates along
with the rest of the variables and store the samples we ob-
tain. During that second phase, we use the following con-
ditional probabilities:
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where j = {j : zj”-l = t}. In the case of missing data

the conditional probability of the simple error estimation
model can be used, which is provided in our paper.
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