
Agreement-based Learning

Emmanouil Antonios Platanios
Machine Learning Department

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Model selection is a problem that has occu-
pied machine learning researchers for a long
time. Recently, its importance has become evi-
dent through applications in deep learning. We
propose an agreement-based learning frame-
work that prevents many of the pitfalls associ-
ated with model selection. It relies on coupling
the training of multiple models by encourag-
ing them to agree on their predictions while
training. In contrast with other model selection
and combination approaches used in machine
learning, the proposed framework is inspired
by human learning. We also propose a learn-
ing algorithm defined within this framework
which manages to significantly outperform al-
ternatives in practice, and whose performance
improves further with the availability of unla-
beled data. Finally, we describe a number of
potential directions for developing more flexi-
ble agreement-based learning algorithms.

1 INTRODUCTION

Model selection is a problem that traces itself back to
the 14th century when William of Ockham argued that
among competing hypotheses, the one with the fewest
assumptions should be selected. This principle is known
as Occam’s razor and centuries later, model selection of-
ten occupies the minds of machine learning researchers.
While developing algorithms that learn patterns, re-
searchers create models that represent the problem being
solved. There often exists a large set of promising mod-
els and the researcher has to decide which one to use.
There exist various methods for making that decision,
with cross-validation (Kohavi, 1995) being one of the
most frequently used in practice. However, researchers

Agent 

Agent 

Agent 

Nature 

Agent Learning 
Process

Estimate trust 
for other agents

Ask questions

Learn by trying to 
agree with most 
trusted answers

Figure 1: Illustration of the agreement-based learning
framework that we propose.

often have to rely on their intuition and expertise, and
spend a significant amount of time fine-tuning their mod-
els. This is especially true for deep learning which is
arguably the most popular area of research in machine
learning, at present. We propose a new learning frame-
work, agreement-based learning, which prevents many
of the pitfalls associated with model selection. It relies
on coupling the training of multiple models and combin-
ing their predictions into a single output. This coupling is
performed by encouraging the models to agree with each
other on their predictions, while training. We show how
the proposed framework is inspired by human learning,
in contrast with other approaches commonly used in ma-
chine learning. Finally, we provide experimental results
which exhibit how our framework successfully manages
to outperform cross-validation and other ensemble meth-
ods that do not couple the training of the models.

We start by discussing the relationship between ma-
chine learning and human learning. Then, we propose
a model for natural learning that resembles what hap-
pens in the real-world and forms the underlying idea of
our agreement-based learning framework, which is for-
mally introduced in section 3.2. In section 2, we dis-
cuss existing work in this direction and how they differ



from our proposal. Finally, in 4 we provide an extensive
experimental evaluation of the agreement-based learning
framework.

1.1 MACHINE VS NATURAL LEARNING

Supervised learning is one of the first and still dominant
approaches used to make machines able to learn. It com-
prises providing the machine a set of input-output pairs
and expecting it to learn a generalized mapping between
inputs and outputs. Thus, the machine must learn to pro-
duce correct outputs for new — previously unseen —
inputs. This process is inspired by the way in which hu-
mans learn. Children ask people to name things they do
not recognize. For example, they will point to a mug
and ask what that object is. After having seen a few
examples they become able to recognize mugs, even if
they look different than the mugs they have seen before.
However, when people ask questions, the answers are
often provided by other humans (as opposed to the sur-
rounding natural environment, for example) and may not
always be correct. Furthermore, due to the limited an-
swers that the surrounding natural environment can pro-
vide, much of the human ability to generalize could be
attributed to the interaction with other humans and this
kind of question-answering.

These observations inspired us to view learning from a
different perspective. Let us refer to each human and an-
imal in nature as an agent. And let us do the same for na-
ture itself (e.g., nature is an agent which tells other agents
that if they drop an apple from a building, it will fall
down). We argue that learning can be defined as a pro-
cess of interaction between these agents, through which
they try to agree with each other. More specifically, we
could argue that each agent: (i) decides how much to
trust other agents, (ii) asks multiple other agents a ques-
tion1, and (iii) forms an idea as to what the true answer
to the question may be by weighting the answers based
on how much the agents that provided them are trusted.
Learning can thus be defined as a process in which agents
learn by trying to agree with each other.

In machine learning, “agents” can refer to different learn-
ing algorithms2 and instead of training each one indepen-
dently, this model of learning proposes that their train-
ing procedures are coupled via the constraint that, while
training, the agents try to agree in their predictions. Fur-

1“Asking a question” is quite an abstract notion here. For
example, dropping an apple from a building and observing
what happens could constitute a question for the nature agent.

2By learning algorithm we refer to the algorithm and its spe-
cific underlying model. For models that have a set of hyper-
parameters, different values of these hyperparameters result in
entirely different learning algorithms, and thus different agents.

thermore, input-output pairs that are known to be true,
as traditionally used in supervised learning, can still be
provided through an agent that is fixed (i.e., does not
learn, such as the previously introduced nature agent).
This model of learning is the underlying idea and main
motivation for the agreement-based learning framework
that we propose in this paper. We believe it can improve
upon the supervised learning model in multiple ways:

1. Sharing Information: Different agents may have ac-
cess to different information. For humans, this
could be due to growing up in different environments
whereas for learning algorithms, it could be due to
the fact that different models rely on and incorpo-
rate different kinds of information (e.g., some mod-
els might use text data as input whereas some others
might use image data). Agreement-based learning al-
lows agents to implicitly share the different informa-
tion they may have by providing answers to questions
that other agents cannot.

2. Preventing Overfitting: Overfitting is a well-studied
concept in machine learning. When an algorithm uses
a complex model and there is limited training data, the
algorithm may learn a mapping function from inputs
to outputs that is much more complex than the true un-
derlying function. This would result in bad general-
ization and potentially many wrong predictions for in-
puts the algorithm has not seen during its training. For
example, modeling a linear function using a tenth or-
der polynomial function while having observed only
3 points of the underlying line, would likely result in
a bad fit. The same is true for humans to some ex-
tent. People tend to “overfit” in their own beliefs due
to the limited experience they might have and the bias
of only acknowledging observations that confirm their
earlier beliefs (i.e., confirmation bias). Agreement-
based learning can help prevent overfitting since it
is less likely that multiple agents would overfit and
agree simultaneously. This is especially true if they
have access to different information.

3. Using Unlabeled Data: In machine learning, we re-
fer to the provided input-output pairs as labeled data
(since each input is “labeled” with some output). The
agreement-based learning framework makes agents
capable of also using unlabeled data, which consist
of inputs without the corresponding outputs. This is
due to the fact that agents can strive to make their out-
puts for these inputs agree, irrespective of the fact that
no true outputs are provided. The framework that we
propose can thus also be used to convert any super-
vised learning algorithm to a semi-supervised learn-
ing algorithm. This will become more clear in sec-
tion 3.2, when we formally introduce our proposed
approach.



Note that there exist situations in which learning can fail
in this context; for example, all agents may agree on
something that is wrong. Such situations challenge the
notion of what is the truth that the agents are trying to
learn, and what truth is, more generally. These questions
are of a philosophical nature and are beyond the scope of
this paper. However, in contrast to traditional machine
learning methods, our approach does not assume an in-
herently true underlying distribution of data and can thus
work in settings in which truth is relative. In the set-
ting that we consider, there always exists a nature agent
that provides answers to some questions and is fixed (i.e.,
does not learn and thus does not change its answers to
questions with time). Since there cannot be total agree-
ment unless other agents agree with the nature agent, the
degenerate case described above is avoided.

2 RELATED WORK

The literature covers many projects that are either ex-
plicitly or implicitly related to agreement-based learn-
ing. A related area of research within the broad spectrum
of machine learning is that of ensemble methods (Diet-
terich, 2000). These are methods that take as input the
outputs of multiple models, or in some cases generate
these models themselves, and combine them into a sin-
gle output. The simplest ensemble method is majority
voting where the most popular value among the outputs
of the models is selected as the combined output. Bag-
ging (Breiman, 1996b) and boosting (Breiman, 1996a)
are methods that, instead of just taking the outputs of
multiple models and combining them, they also couple
their training. They do so by manipulating the distri-
bution of the data provided to the models while train-
ing. Freund & Schapire (1997) proposed one of the most
influential and widely used boosting algorithms, known
as AdaBoost. AdaBoost changes the distribution of the
training data such that the training algorithm can focus
more on examples for which it has made erroneous pre-
dictions in the past. However, in contrast to the frame-
work that we propose, AdaBoost places constraints on
the functional form of the ensemble models (i.e., their
predictions have to be boolean-valued scalars). Further-
more, bagging and boosting algorithms do not make use
of unlabeled data that may be available during training.

Researchers have used the concept of agreement between
multiple models in other ways, too. For example, Han-
neke (2014) reviews methods that use disagreement be-
tween models to perform active learning, and others have
used some notion of agreement between models in order
to estimate their error rates (Collins & Singer, 1999; Das-
gupta et al., 2001; Bengio & Chapados, 2003; Madani
et al., 2004; Schuurmans et al., 2006; Balcan et al.,

2013; Parisi et al., 2014; Platanios et al., 2014, 2016;
?). The work most relevant to our proposal, though,
is co-training (Blum & Mitchell, 1998). In co-training,
a set of models is trained using the following iterative
process: (i) each model is trained independently given a
small set of initial training data, (ii) the models make pre-
dictions on a set of unlabeled data, (iii) their most con-
fident predictions are added to the training dataset, and
(iv) the process repeats itself from step (i). Note that,
even though the models do not directly attempt to max-
imize agreement between themselves, they implicitly do
so. This is due to the fact that, through the common train-
ing dataset that they can append their predictions to, the
models effectively train each other. One possible pitfall
of co-training is that if a model always produces confi-
dent yet wrong predictions, it can negatively affect the
performance of other models by corrupting the training
dataset. This pitfall is avoided with our framework since
the models are not necessarily blindly trusted and their
predictions are not equally weighted.

3 PROPOSED METHOD

We consider a traditional machine learning setting in
which we have a set of models3, f1, . . . , fM , that, given
some input x, produce some output fj(x). We assume
that these models have parameters that are learned by
minimizing a loss function of the form:

Lj

(
{xi, yi}Ni=1

)
=

N∑
i=1

`j(fj(xi), yi), (1)

where j = 1, . . . ,M , {xi, yi}Ni=1 is the set of training
examples, and `j is the loss incurred for a single training
example and it penalizes disagreement of the model pre-
diction, fj(xi), with the provided label, yi (e.g., cross-
entropy for classification problems or mean squared er-
ror for regression problems). This function can be mini-
mized using an appropriate optimization algorithm (e.g.,
gradient descent). This is a general supervised learn-
ing setting that covers both classification and regression
problems.

3.1 TRADITIONAL APPROACH

Traditionally, a machine learning researcher would train
all these different models separately and then do one of
two things:

3Note that by “different,” here, we do not only refer to
structural differences in the models, but we include differences
in hyperparameters among instantiations of the same model.
For example, in the context of deep learning one could set
f1, . . . , fM to be multi-layer perceptrons (MLPs) with differ-
ent architectures or activation functions, or even completely
different neural networks.



1. Model Selection: Choose a single model for making
predictions. A commonly used method to perform
model selection is cross-validation (Kohavi, 1995),
mainly due to its strong theoretical guarantees. Se-
lecting one model is what is frequently done in deep
learning when researchers talk about parameter tun-
ing (see e.g., the work of Bergstra & Bengio (2012)).

2. Model Combination (Ensemble): Combine the pre-
dictions of all models into a single prediction using
some kind of ensemble method (Dietterich, 2000).
A simple yet powerful and frequently used ensemble
method is majority voting, where the predictions are
combined by taking their mean.

We propose and describe, in the remainder of this paper,
a type of ensemble method in which the training of the
models is coupled (and thus the models cannot be trained
separately). However, in contrast to other model combi-
nation approaches that do this (e.g., boosting (Breiman,
1996a)), our approach does not impose any strict con-
straints on the functional form of the models, other than
that their parameters can be learned by minimizing a loss
function of the form presented in equation 1.

3.2 AGREEMENT-BASED LEARNING

Inspired by natural learning (section 1.1), we propose a
new approach for training, different than the traditional
approaches described in the previous section. In order to
consider agreement between models during training, we
define an augmented loss function that replaces the loss
function of equation 1:

ALj

(
{xi, yi}Ni=1, {x′i}N

′

i=1

)
=

Lj

(
{xi, yi}Ni=1

)
+ λj

N ′∑
i=1

`′j(fj(x
′
i), f̂(x

′
i)),

(2)

where {x′i}N
′

i=1 is a set of training examples that are unla-
beled, f̂ represents a combined prediction from all mod-
els, which we shall call the consensus prediction and
which is defined in the next section, `′j is a loss func-
tion that penalizes disagreement of the model predic-
tion with the consensus prediction, and λj ≥ 0 is a
non-negative number which represents the tendency of
model j to agree with the consensus. For simplicity, we
set `′j = `j and λj = 1 for all j = 1, . . . ,M , even
though our framework supports any non-negative value4.
It remains to: (i) define the consensus prediction (sec-
tion 3.2.1), (ii) define the training algorithm that mini-
mizes the augmented loss function (section 3.2.2), (iii)

4Note that, in principle, negative values can also be used,
but this would entail that an agent is trying to disagree with
the other agents. This is an interesting idea to explore, but is
outside the scope of this paper.

define the way in which predictions are made (section
3.2.3), and (iv) point out the relationship between this
augmented loss function and the ideas presented in sec-
tion 1.1, regarding natural learning (section 3.2.4).

This augmented loss function effectively forces the
model to not only try and agree with the provided input-
output pairs, but to also — at the same time — try and
agree with the other models on other inputs for which we
do not know the corresponding outputs. This equation
also makes it easy to see why our proposed approach
helps prevent overfitting, as mentioned in section 1.1.
The added term to the loss function can be interpreted
as a regularizer to the original optimization problem. It
is thus easy to see why the added term can help the opti-
mization solver of the original problem avoid local min-
ima and find a better solution.

3.2.1 Consensus Definition

The consensus prediction, f̂(x), combines the predic-
tions of all models, f1(x), . . . , fM (x), into a single pre-
diction. It could be generated using any existing en-
semble method (Dietterich, 2000). For ensemble meth-
ods that require no training, such as majority voting,
the definition of the consensus prediction is straightfor-
ward. However, some consensus methods, including the
ones described in the rest of this section, require train-
ing. Section 3.2.2 describes the exact way in which they
are trained and in which the training procedures of all
models are coupled together. In the rest of this section,
we describe the consensus methods that we used for our
experiments. In our experiments we consider multi-label
classification problems and thus, we henceforth assume
that the model predictions are vectors containing proba-
bilities (i.e., each element corresponds to the probability
of a particular label being positive).

Trainable Majority Vote. The majority vote consensus
is defined as the mean of the model predictions:

f̂MV (x) ,
1

M

M∑
j=1

fj(x). (3)

A simple extension to this consensus method is to con-
sider a weighted combination of the model predictions:

f̂TMV (x) ,
1

M

M∑
j=1

wjfj(x), where
M∑
j=1

wj = 1, (4)

where the weights can be learned by minimizing a loss
function. In the context of our framework, the loss
function being minimized is the one defined in equation
1. For our experiments, we used the Adam optimizer
(Kingma & Ba, 2014) to learn the values for the weights
that minimize that objective function.



Semi-Supervised RBM Consensus. This is a semi-
supervised extension of the method proposed by Shaham
et al. (2016). The original method that the authors pro-
pose is, to the extent of our knowledge, the current state-
of-the-art for unsupervised ensemble learning, which is
partly why we chose to use it, in addition to ease of im-
plementation. The authors originally propose using a
Restricted Boltzmann Machine (RBM) for unsupervised
ensemble learning. In a multi-label classification setting,
we define one RBM per label which uses the sigmoid
activation function; the visible units of each RBM corre-
spond to the model predictions, and there exists a single
hidden unit that corresponds to the consensus prediction.
More specifically in our setting, we have that:

P(f̂(x), f1(x), . . . , fM (x)) =

1

Z
exp

[
af̂(x)+

M∑
j=1

bjfj(x)+
M∑
j=1

wjfj(x)f̂(x)

]
,

(5)

where P denotes a probability, a, bj , and wj , for j =
1, . . . ,M , are trainable parameters, and Z is a normal-
izing constant to ensure the probability over all predic-
tion values is valid (i.e., sums to 1). The RBM is trained
by maximizing the likelihood of the observed data using
gradient-based optimization. The consensus prediction
can then be computed by taking the mode of the follow-
ing conditional distribution:

P(f̂(x) = 1 | f1(x), . . . , fM (x)) =

σ

[
a+

M∑
j=1

wjfj(x)

]
,

(6)

where σ(x) = 1
1+e−x is the sigmoid function. Our ex-

tension of this RBM-based method also uses gradient de-
scent to train the RBM. However, the likelihood function
we consider consists of two terms: one using unlabeled
data (which is the same as that used by Shaham et al.
(2016)), and one using labeled data, which is easy to de-
fine, given the definition of the RBM model using the
sigmoid activation function.

Note that the agreement-based learning framework that
we define is agnostic with respect to the chosen consen-
sus method. This means that one could “plug in” any rea-
sonably performing ensemble method and expect similar
results. The choice of consensus method could depend
on assumptions made about the models being trained.
Some alternative methods that make different assump-
tions were proposed by Platanios et al. (2014, 2016); ?.

3.2.2 Coupling the Training Procedures

The consensus prediction, f̂ , in equation 2 is a function
of all model predictions. This means that if we want to

train our models using the augmented loss function, they
all need to be trained in tandem. For this reason, we
propose algorithm 1. The algorithm assumes that an iter-
ative optimization algorithm is used to minimize the loss
function of each model. This optimization algorithm is
called in the parameter update steps of lines 10 and 12.
For example, these steps could represent a gradient de-
scent step. At every iteration of the optimization, the
following steps are performed:

1. An unlabeled and a labeled data batch are sampled
from the training data. The sizes of those batches can
be chosen arbitrarily, but note that the relative sizes of
each batch will have a balancing effect similar to λj
in equation 2. In our experiments, we set them equal.

2. The consensus prediction is computed for the unla-
beled data batch, using the current parameter values
for each model.

3. The parameters of each model are updated so that the
value of the augmented loss function of equation 2
is reduced. Note that for the first few iterations (K0

in algorithm 1), the original model loss function is
used instead; this is due to the fact that in the begin-
ning of training, all models are expected to produce
bad predictions and thus, forcing them to agree may
not be a good idea. Instead, we can wait until they
can perform better. Most consensus methods are only
guaranteed to work well if the majority of the models
produce predictions better than chance (i.e., random).
A simple heuristic is to start using the augmented loss
function after at least half of the models have perfor-
mance on the training data higher than some threshold
(e.g., when train accuracy exceeds 50%).

4. The consensus method is re-trained every few itera-
tions (K in algorithm 1). Note that this re-training
step could also be performed at every iteration but it
is preferable not to do so, since: (i) the model param-
eters do not generally change dramatically between
each iteration, and (ii) it may be prohibitively expen-
sive to do so at every step.

Convergence. From the definition of the augmented
loss function in equation 2 and algorithm 1, it is clear
that, while training, the model parameters change and
thus the function being optimized is not a fixed function.
In general, this could mean that the iterative optimiza-
tion procedure might not converge to a solution. How-
ever, we expect that as training proceeds, the model pre-
dictions will start agreeing more often5. Thus, the aug-
mented loss function will start behaving more like the
original model loss function, retaining its convergence

5This is expected since minimizing the augmented loss
function involves maximizing agreement through the consen-
sus term.



Algorithm 1: Agreement-based learning algorithm.

Input: Models f1, . . . , fM , consensus method f̂ , unlabeled
dataset DU = {x′i}N

′
i=1, labeled dataset

DL = {xi, yi}Ni=1, unlabeled data batch size NU ,
labeled data batch size NL, consensus train burn-in
iterations K0, consensus retrain frequency K

1 Initialize all model and consensus method parameters
2 iteration← 0
3 while at least one model has not converged do
4 Sample unlabeled data batch BU of size NU from DU

5 Sample labeled data batch BL of size NL from DL

6 Compute consensus prediction f̂(x), for all x ∈ BU

7 for j = 1, . . . ,M do
8 if model fj has not converged then
9 if iteration > K0 then

10 Update model fj parameters so that the
augmented loss, ALj , of equation 2
decreases

11 else
12 Update model fj parameters so that the loss,

Lj , of equation 1 decreases

13 if iteration = 0 mod K then
14 Re-train f̂ using DU and DL

15 iteration← iteration+ 1

Output: Trained models f1, . . . , fM and trained consensus f̂ .

properties. Rather than theoretical convergence guaran-
tees, we provide empirical evidence by noting that the
algorithm converged in all of our experiments (presented
in section 4).

Scalability. For the proposed algorithm we can only par-
allelize over the different model parameter updates (i.e.,
parallelize the “for” loop starting in line 7 of algorithm
1). This makes our method scalable, but we can do even
better. Even though in our proposed algorithm, the opti-
mization iterations of each model are synchronous, train-
ing could also be done in a completely asynchronous and
distributed manner. This way, if one model’s optimiza-
tion iterations are faster than those of other models, it
would not have to wait until all others have performed
their iterations; it could instead proceed with its own op-
timization loop. In section 3.2.4 we discuss some exten-
sions that would result in better scalability properties.

Performance. An interesting observation regarding our
proposed algorithm is that, as mentioned earlier, it can
take a set of supervised models and train them in a semi-
supervised manner. We expect this to result in better
performance (e.g., better prediction accuracy) relative to
a purely supervised approach, as the availability of un-
labeled data increases. This is due to the fact that, as
discussed in section 1.1, the agreement-based learning
framework can improve generalization and help prevent
overfitting. Indeed, as shown in section 4, our experi-
ments confirm this expectation.

3.2.3 Making Predictions

As per the definition of the consensus prediction in sec-
tion 3.2.1, it follows naturally to use the consensus pre-
diction as the output prediction of our algorithm. This
also means that the algorithm we propose is a type of
ensemble method in which the training of the models is
coupled.

Note that the main contribution of our learning frame-
work is the agreement-based coupling of the training of
multiple models. A model selection approach could still
be used to decide which model is used to make predic-
tions. In principle, the consensus method used could sim-
ply be an existing model selection method.

3.2.4 Relationship to Natural Learning

The algorithm defined in the previous section is inspired
by the ideas presented in section 1.1. Even though a no-
tion of trust is not established in the algorithm, the con-
sensus prediction step and the augmented loss definition
can be thought os as implementing both of the first two
steps in the natural learning process described in section
1.1. Furthermore, minimizing the augmented loss func-
tion of equation 2 is equivalent to maximizing agreement
with some nature agent, providing known-to-be-true ex-
amples, and at the same time maximizing agreement with
the other agents (through the consensus loss term). The
λj parameter in that equation corresponds to the trade-off
between maximizing these two quantities. Therefore, the
algorithm presented in the previous section offers a sim-
ple first instance of an agreement-based learning frame-
work inspired by the natural process of learning.

In the next few paragraphs, we describe a handful of po-
tential extensions to our algorithm that can bring us even
closer to natural learning, as described earlier.

Trust. The trust of one agent for others could be explic-
itly modeled and used to compute personalized consen-
sus predictions for that agent. There exist various unsu-
pervised and semi-supervised accuracy estimation meth-
ods (Platanios et al., 2014, 2016; ?) that could be used for
estimating how much an agent can trust another, about a
particular question (e.g, about classifying noun phrases
as representing cities or not). Then, the obtained trust
estimates could be used to weigh each agent’s answer
to a question and provide a personalized consensus pre-
diction for an agent to use as training data. This would
effectively provide an alternative consensus method that
generates different consensus predictions for each agent,
based on how much they trust the others.

Decentralized Communication. In our algorithm we
assume that the consensus is formed by combining all



model predictions together. This can be prohibitively
expensive, in practice, when a large number of models
is used. Furthermore, it is also not a realistic represen-
tation of natural learning in that humans only consult a
few other humans when they have questions. One way to
deal with this issue would be to make agents individually
able to choose which other agents they want to ask, with
respect to a particular question (i.e., these could be the
agents they trust the most for a particular kind of ques-
tion), and what questions they want to ask, more gener-
ally. This could be achieved by using an active learn-
ing approach (Settles, 2012). ? propose an approach that
could be useful in this setting. This would provide a more
realistic, in the sense that it is closer to natural learning,
implementation and would result in a much more scal-
able and easily distributed approach.

There are many more interesting directions to pursue,
such as a reinforcement learning approach (where agree-
ment can be part of a reward function) and a game-
theoretic interpretation of this model of natural learning,
but these discussions are beyond the scope of this paper.

4 EXPERIMENTS

In the following sections we describe: (i) the experimen-
tal setup, (ii) the datasets we used for our experiments,
and (iii) the results we obtained.

4.1 EXPERIMENTAL SETUP

For our experiments we consider a multi-label classifi-
cation setting. This means that the predictions that our
models produce are real-valued vectors with values in
the interval [0, 1]. Each value represents the probabil-
ity of the corresponding label being equal to 1. Before
each experiment is run, we shuffle the dataset and split it
into train and test parts. We run two experiments for each
dataset: one using only 5% of the data to train and one
using 50%. This was done to test our hypothesis that
agreement-based learning offers greater benefits when
less supervised training data is available. Note that the
same seed was used for shuffling the datasets, for all ex-
periments, in order to produce comparable results.

Models. For each dataset, the set of models that we con-
sider are multi-layer perceptrons (MLPs) with various ar-
chitectures. They all use leaky rectified linear activation
functions (with the leakage parameter set to 0.01), but we
vary the number of hidden layers and number of units per
layer to define different architectures, and thus, different
models. The architectures used for each dataset are listed
in section 4.2.

Methods. We run experiments and compare results for
the following methods:

• CV-5: This is simply 5-fold leave-one-out cross-
validation and forms our baseline. For this method,
we perform the following steps during training:

1. Split the train dataset into 5 folds.
2. For each of these folds, train each model on the

remaining 4 folds and evaluate its performance on
the current fold.

3. Average these evaluation results over all 5 folds.
4. Pick the model with the best performance and re-

train it using the whole training dataset.

The final predictions over the testing dataset are made
using the best-performing model, selected in step 4.

• TMV: Train each model separately and combine their
predictions using the trainable majority vote method
presented in section 3.2.1. Note that this is effectively
algorithm 1 with K0 =∞ (i.e., keep using the origi-
nal model loss function during training, without ever
switching to the augmented loss function).

• TMV-AL: Use algorithm 1 with the trainable majority
vote method of section 3.2.1 as the consensus.

• RBM: Train each model separately and combine their
predictions using the semi-supervised RBM method
presented in section 3.2.1. Note that this is effectively
algorithm 1 with K0 =∞ (i.e., keep using the origi-
nal model loss function during training, without ever
switching to the augmented loss function).

• RBM-AL: Use algorithm 1 with the semi-supervised
RBM method of section 3.2.1 as the consensus.

For both the trainable majority vote and the semi-
supervised RBM methods, we use the Adam optimizer
(Kingma & Ba, 2014). Furthermore, we set a limit of
10, 000 training iterations for the first time the consensus
methods are trained, but reduce that to 1, 000 for every
time they are re-trained. This reduction is due to the use
of warm-starts (i.e., the re-train optimization procedure
is initialized at the previous solution) deeming a higher
number of iterations unnecessary.

For all methods except cross-validation, we set NU =
NL = 128, K0 = 10, and K = 100. These parameter
values are picked so that our experiments take a reason-
able amount of time to run, but varying their values does
not seem to affect the results. For the cross-validation
method, we still use a batch size of 128 while training
each model separately. Furthermore, we limit all experi-
ments to a maximum number of 2, 000 training iterations
in order to limit computation time6.

6Note that the training procedures for all experiments con-
verged before that limit was reached.



Table 1: Datasets used in experiments. Number of features corresponds to the dimensionality of the inputs and number
of labels corresponds to the dimensionality of the outputs for each dataset. Number of instances corresponds to the
total size of the data set. Density corresponds to the proportion of labels that are positive, relative to the total number
of labels across all instances.

DATASET #FEATURES #LABELS #INSTANCES DENSITY (%)
DELICIOUS 501 982 16,105 1.94
MEDIAMILL 120 101 43,907 4.33
RCV1V2 47,236 101 30,000 2.85
YAHOO-ARTS 23,146 26 7,484 6.36
YAHOO-BUSINESS 21,928 27 11,214 6.08
YAHOO-COMPUTERS 34,099 30 12,444 5.60
YAHOO-EDUCATION 27,540 27 12,030 5.42
YAHOO-ENTERTAINMENT 32,001 21 12,730 6.73
YAHOO-HEALTH 30,607 30 9,205 5.99
YAHOO-REFERENCE 39,682 30 8,027 4.01
YAHOO-SCIENCE 37,197 30 6,428 3.50
YAHOO-SOCIAL 52,359 30 12,111 4.60
YAHOO-SOCIETY 31,802 27 14,512 6.28

Evaluation. The evaluation metric we use is the macro-
averaged area under the precision-recall curve (we refer
to this metric as AUC), computed over the testing dataset.
This metric is obtained by: (i) computing the area un-
der the precision-recall curve for each output label sep-
arately, and (ii) averaging these values. We decided to
use this metric as it can measure multi-label classifica-
tion performance while accounting for the trade-off be-
tween precision and recall, for all possible ways in which
the probabilistic predictions can be thresholded and con-
verted to boolean values.

Implementation. We implemented our agreement-
based learning framework in Python, using the Tensor-
Flow library (Abadi et al., 2016) as the backend for per-
forming all computations. We have released our imple-
mentation as a standalone general purpose library that
can be used for training arbitrary TensorFlow models.

4.2 DATASETS

We use several datasets obtained from the Mulan library
website (available at http://mulan.sourceforge.

net/datasets-mlc.html). Table 1 lists the datasets.
The DELICIOUS dataset contains textual data of web
pages as inputs, along with a set corresponding tags
as outputs (Tsoumakas et al., 2008), and is used for
automated tag suggestion. It was extracted from the
del.icio.us social bookmarking site on the 1st of
April, 2007. The MEDIAMILL dataset is taken from the
MediaMill video indexing challenge (Snoek et al., 2006).
The inputs consist of visual features derived from video
sequences and the outputs consist of semantic concepts
(e.g., indoors vs. outdoors). The YAHOO datasets con-
tain data of web pages that were obtained from Yahoo’s
top-level categories (e.g., arts, business, etc.) and that are

automatically being classified into a number of second-
level categories (Ueda & Saito, 2003).

The multi-layer perceptron (MLP) architectures used for
each dataset are shown in the following list. Please refer
to the “Models” paragraph of the previous section for in-
formation about how these architectures are used in our
experiments. The format is a comma-separated list of ar-
chitectures with each architecture being encoded as a list
of numbers. Each number corresponds to the number of
units in the corresponding hidden layer. Therefore, [32
16] corresponds to two hidden layers with 32 and 16
units, respectively.

1. Delicious: [16], [256], [16 16], [256 256],
[512 256], [1024 512 256], [16 16 16 16],
[256 256 256 256].

2. MediaMill: [1], [8], [16 8], [32 16],
[256 128], [1024 1024], [2048 2048],
[128 32 8], [128 64 32 16].

3. RCV1v2 and Yahoo (all datasets): [1], [8],
[16 8], [32 16], [256 128], [128 32 8],
[128 64 32 16].

Note that these architectures were chosen arbitrarily in
order to have both very simple and very complex models
that can overfit easily.

4.3 RESULTS

The results from our experiments are shown in table 2.
Our first observation is that the RBM-AL method always
outperforms all of the competing methods. This is a very
strong result for our proposed agreement-based learning
framework. However, it is interesting to also note that
TMV-AL does not always outperform TMV. In fact, for
the experiments that we ran, it almost always gets outper-

http://mulan.sourceforge.net/datasets-mlc.html
http://mulan.sourceforge.net/datasets-mlc.html


Table 2: Area under the precision-recall curve (AUC), computed over the test dataset, for all our experiments. All
values are scaled by 10−2 and each column corresponds to a dataset. There are two sets of experiments: one using 5%
of the data as training data and one using 50%. Higher AUC values are better.

YAHOO

×10−2

D
E

L
IC

IO
U

S

M
E

D
IA

M
IL

L

R
C

V
1V

2

A
R

T
S

B
U

S
IN

E
S

S

C
O

M
P

U
T

E
R

S

E
D

U
C

A
T

IO
N

E
N

T
E

R
TA

IN
M

E
N

T

H
E

A
LT

H

R
E

F
E

R
E

N
C

E

S
C

IE
N

C
E

S
O

C
IA

L

S
O

C
IE

T
Y

5% TRAIN DATA / 95% TEST DATA

CV-5 11.09 15.22 52.30 13.36 14.87 14.25 13.30 22.37 15.87 9.47 10.79 12.85 16.06
TMV 11.35 16.69 46.20 16.31 12.24 16.08 18.80 29.44 20.06 23.42 15.64 21.87 19.91

TMV-AL 12.01 20.19 53.39 12.04 7.29 9.08 11.33 22.20 12.31 7.82 8.16 8.97 14.54
RBM 12.66 28.02 55.63 26.93 34.89 30.08 34.41 37.88 42.48 41.96 29.16 30.29 30.51

RBM-AL 23.30 39.86 59.87 38.26 49.07 49.86 46.48 39.12 50.65 44.63 47.37 49.55 30.61

50% TRAIN DATA / 50% TEST DATA

CV-5 14.45 16.41 94.28 31.54 32.42 40.07 32.54 43.02 43.77 25.75 34.48 44.81 34.96
TMV 12.84 22.55 89.56 29.29 30.86 32.85 27.05 43.77 36.93 30.08 29.41 33.51 31.29

TMV-AL 13.35 20.38 92.34 25.13 21.02 27.10 25.86 34.63 24.30 22.43 21.63 31.15 30.97
RBM 28.64 41.00 96.43 39.89 40.00 48.92 43.58 54.32 49.82 30.72 41.00 38.32 39.44

RBM-AL 42.21 46.99 98.87 41.52 49.42 50.30 47.72 57.27 53.76 41.53 48.86 51.23 44.45

formed by TMV. The most likely reason for that is that
the consensus prediction that TMV generates is not very
accurate and is also potentially too sensitive to depen-
dencies among the models7. Thus, a necessary condition
for our proposed algorithm to work is that the consensus
method used performs well. This condition seems to be
satisfied by the RBM consensus. It would also probably
be satisfied by other state-of-the-art ensemble methods
(Platanios et al., 2014, 2016; ?) that use similar intuition
for the dependencies among the models. On a related
note, we, more generally, expect that an agreement-based
learning framework would always work better when the
models being used are not highly dependent.

Furthermore, we observe that, even though RBM-AL
always outperforms RBM, which is the second best-
performing method in our experiments, it does so by a
larger margin when more unlabeled data are used (i.e.,
95% test data vs. 50% test data). This observation agrees
with our expectation of section 3.2.2.

Finally, it is interesting to point out that RBM-AL always
outperforms cross-validation. Perhaps even more inter-
estingly, using RBM-AL with 5% of the dataset as train-
ing data outperforms using cross-validation with 50% of
the dataset as training data. This is a significant result
that makes agreement-based learning seem like a very
strong alternative to cross-validation.

7A highly dependent scenario would be one where we have
one model and nine copies of another model. Such a scenario
could be detrimental to a bad consensus method.

5 CONCLUSION

In this paper, we have proposed an agreement-based
learning framework that prevents many of the pitfalls as-
sociated with model selection. This framework is in-
spired by human learning and it relies on coupling the
training of multiple models by encouraging them to agree
on their predictions while training. We also proposed
an algorithm defined within this framework which was
shown to significantly outperform alternative methods in
practice, and whose performance was shown to improve
further with the availability of unlabeled data. There ex-
ist many potential future directions for this work. We
intend to pursue the directions related to trust and de-
centralized communication that were discussed in sec-
tion 3.2.4.

References
Abadi, Martı́n, Barham, Paul, Chen, Jianmin, Chen,

Zhifeng, Davis, Andy, Dean, Jeffrey, Devin, Matthieu,
Ghemawat, Sanjay, Irving, Geoffrey, Isard, Michael,
Kudlur, Manjunath, Levenberg, Josh, Monga, Rajat,
Moore, Sherry, Murray, Derek G., Steiner, Benoit,
Tucker, Paul, Vasudevan, Vijay, Warden, Pete, Wicke,
Martin, Yu, Yuan, and Zheng, Xiaoqiang. Tensor-
Flow: A System for Large-scale Machine Learning.
In USENIX Conference on Operating Systems Design
and Implementation, pp. 265–283, 2016.

Balcan, Maria-Florina, Blum, Avrim, and Mansour,
Yishay. Exploiting Ontology Structures and Unlabeled



Data for Learning. International Conference on Ma-
chine Learning, pp. 1112–1120, 2013.

Bengio, Yoshua and Chapados, Nicolas. Extensions to
Metric-Based Model Selection. Journal of Machine
Learning Research, 3:1209–1227, 2003.

Bergstra, James and Bengio, Yoshua. Random Search for
Hyper-parameter Optimization. J. Mach. Learn. Res.,
13:281–305, February 2012. ISSN 1532-4435.

Blum, Avrim and Mitchell, Tom. Combining Labeled
and Unlabeled Data with Co-training. In Annual Con-
ference on Computational Learning Theory, pp. 92–
100, 1998.

Breiman, Leo. Bias, Variance, and Arcing Classifiers.
Technical Report 460, Statistics Department, Univer-
sity of California at Berkeley, 1996a.

Breiman, Leo. Bagging Predictors. Mach. Learn., 24(2):
123–140, August 1996b. ISSN 0885-6125.

Collins, Michael and Singer, Yoram. Unsupervised Mod-
els for Named Entity Classification. In Joint Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and Very Large Corpora, 1999.

Dasgupta, Sanjoy, Littman, Michael L, and McAllester,
David. PAC Generalization Bounds for Co-training. In
Neural Information Processing Systems, pp. 375–382,
2001.

Dietterich, Thomas G. Ensemble Methods in Machine
Learning. In International Workshop on Multiple
Classifier Systems, pp. 1–15, 2000.

Freund, Yoav and Schapire, Robert E. A Decision-
Theoretic Generalization of On-Line Learning and an
Application to Boosting. J. Comput. Syst. Sci., 55(1):
119–139, August 1997. ISSN 0022-0000.

Hanneke, Steve. Theory of Disagreement-Based Active
Learning. Foundations and Trends in Machine Learn-
ing, 7(2-3):131–309, 2014. ISSN 1935-8237. doi:
10.1561/2200000037.

Kingma, Diederik P. and Ba, Jimmy. Adam: A Method
for Stochastic Optimization. Computing Research
Repository, 2014. URL https://arxiv.org/
abs/1412.6980.

Kohavi, Ron. A Study of Cross-validation and Bootstrap
for Accuracy Estimation and Model Selection. In In-
ternational Joint Conference on Artificial Intelligence
- Volume 2, pp. 1137–1143, 1995.

Madani, Omid, Pennock, David, and Flake, Gary. Co-
Validation: Using Model Disagreement on Unlabeled
Data to Validate Classification Algorithms. In Neural
Information Processing Systems, 2004.

Parisi, Fabio, Strino, Francesco, Nadler, Boaz, and
Kluger, Yuval. Ranking and combining multiple pre-
dictors without labeled data. Proceedings of the Na-
tional Academy of Sciences, 2014.

Platanios, Emmanouil Antonios, Blum, Avrim, and
Mitchell, Tom M. Estimating Accuracy from Unla-
beled Data. In Conference on Uncertainty in Artificial
Intelligence, 2014.

Platanios, Emmanouil Antonios, Dubey, Avinava, and
Mitchell, Tom M. Estimating Accuracy from Un-
labeled Data: A Bayesian Approach. In Interna-
tional Conference on Machine Learning, pp. 1416–
1425, 2016.

Schuurmans, Dale, Southey, Finnegan, Wilkinson, Dana,
and Guo, Yuhong. Metric-Based Approaches for
Semi-Supervised Regression and Classification. In
Semi-Supervised Learning. 2006.

Settles, Burr. Active Learning, volume 6. Morgan &
Claypool Publishers, June 2012.

Shaham, Uri, Cheng, Xiuyuan, Dror, Omer, Jaffe, Ariel,
Nadler, Boaz, Chang, Joseph T., and Kluger, Yuval.
A Deep Learning Approach to Unsupervised Ensem-
ble Learning. In International Conference on Machine
Learning, pp. 30–39, 2016.

Snoek, Cees G. M., Worring, Marcel, van Gemert,
Jan C., Geusebroek, Jan-Mark, and Smeulders, Arnold
W. M. The Challenge Problem for Automated De-
tection of 101 Semantic Concepts in Multimedia. In
ACM International Conference on Multimedia, pp.
421–430, 2006.

Tsoumakas, Grigorios, Katakis, Ioannis, and Vlahavas,
Ioannis P. Effective and Efficient Multilabel Classifi-
cation in Domains with Large Number of Labels. In
ECML/PKDD 2008 Workshop on Mining Multidimen-
sional Data, 2008.

Ueda, Naonori and Saito, Kazumi. Parametric mixture
models for multi-labeled text. In Advances in Neural
Information Processing Systems, pp. 721–728, 2003.

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

	INTRODUCTION
	MACHINE VS NATURAL LEARNING

	RELATED WORK
	PROPOSED METHOD
	TRADITIONAL APPROACH
	AGREEMENT-BASED LEARNING
	Consensus Definition
	Coupling the Training Procedures
	Making Predictions
	Relationship to Natural Learning


	EXPERIMENTS
	EXPERIMENTAL SETUP
	DATASETS
	RESULTS

	CONCLUSION

