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Neural Machine Translation (NMT) Wellon

« NMT represents the state-of-the-art for many machine translation systems.

« NMT benefits from end-to-end training with large amounts of data.

« Large scale NM

systems are often hard to train:

ransformers rely on a number of heuristics such as specialized learning

rate schedules and large-batch training.
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Easy Medium Hard
Thank you, for being so patient today
Training Example Thank youl! Thank you, for being so patient! and coming to this talk even though
vou re probably tired!

Avold getting stuck in bad local optima early on!

- [Elman 1993]: Introduced the idea of curriculum learning.
- [Kocmi 2017, Bojar 2017]: Empirical evaluation on MT. Final performance is hurt.
- [Zhang 2018]: Data binning strategy. The results are highly sensitive on several hyperparameters.

No improvements in

Improvements in
performance!

training time!

Discrete
regimes.
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We introduce two key concepts:

 Difficulty: Represents the difficulty of a training example that may depend on
the current state of the learner.

d(s) (e.g., sentence length)
|

Training Example

« Competence: Value between O and 1 that represents the progress of a
learner during its training and can depend on the learner’s state.

c(t) (e.g., validation set performance)
'
Training Step
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CURRICULUM LEARNING

DIFFICULTY COMPETENCE

Use sample only if:
difficulty(sample) = competence(model)
MODEL TRAINER

The training examples are ranked according to their difficulty and the learner is
only allowed to use the top ¢(t) portion of them at time ¢.
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1. Compute the difficulty d(s;) for each s; € D.

2. Compute the cumulative density function (CDF), d(s;) € [0, 1], of the difficulties.

Frequency

Sentence Length 0.04

Thank you very much! 4

Barack Obama loves ... 13

My name is ... 6

What did she say ... 123 ‘ “l
° OOO _ll IIIIIIIIII.I ___________
° 0

Sentence Length

100
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University

1. Compute the difficulty d(s;) for each s; € D.

2. Compute the cumulative density function (CDF), d(s;) € [0, 1], of the difficulties.

CDF

1 Sentence Difficulty
Thank you very much! 0.01
Barack Obama loves... 0.15
My name is ... 0.03
What did she say ... 0.95
0
0 100

Sentence Length
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University

1. Compute the difficulty d(s;) for each s; € D.

2. Compute the cumulative density function (CDF), d(s;) € [0, 1], of the difficulties.

Sentence Difficulty

Thank you very much! 0.01

Barack Obama loves ... 0.15
My name is ... 0.03

What did she say ... 0.95

0 100
Sentence Length

50% shortest sentences
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1. Compute the difficulty d(s;) for each s; € D.
2. Compute the cumulative density function (CDF), d(s;) € [0, 1], of the difficulties.

3. Fortrainingstep t =1, ...:

. Compute the model competence c(t).
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1. Compute the difficulty d(s;) for each s; € D.
2. Compute the cumulative density function (CDF), d(s;) € [0, 1], of the difficulties.

3. Fortrainingstep t =1, ...:
. Compute the model competence c(t).

1. Sample a data batch uniformly from all examples s; € D such that:

d(s;) < c(t)

I1l. Invoke the model trainer using the sampled batch.

We are not changing the relative probability of each training example under the input
data distribution. We are constraining the domain of that distribution.
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Our Approach — Algorithm

Difficulty
Step 1000

1

Sample uniformly from
blue region

O |

0

Step 10000
1

Sentence Length

100

Competence

- Competence at current step

10000

Step
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We denote our training corpus as a collection of sentences, {s;}:2. where

each sentence is a sequence of words: s; = {wg, ..., Wy | .
. Sentence Length: diengtn (8:) = N;

N;
. Word Rarity: drarity (si) = =) log p(w},)
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c(t)ta value in |0, 1] that represents the progress of a learner during its training.

proportion of training data the learner is allowed to use at step ¢.
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Our Approach — Competence

c(t)]:a value in |0, 1] that represents the progress of a learner during its training.

proportion of training data the learner is allowed to use at step ¢.
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c(t)]:a value in |0, 1] that represents the progress of a learner during its training.

proportion of training data the learner is allowed to use at step ¢.

Learner-Dependent Competence

E.o., validation set performance.
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c(t)ta value in |0, 1] that represents the progress of a learner during its training.

proportion of training data the learner is allowed to use at step ¢.

Root Competence

Keep the rate in which new examples come in,
inversely proportional to the training data size:

de(t) P
dt c(t)

/ c(t)de(t) = / Pdt = c(t) = vaPL+ D
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c(t)]:a value in |0, 1] that represents the progress of a learner during its training.

proportion of training data the learner is allowed to use at step ¢.

Root Competence

Keep the rate in which new examples come in,
inversely proportional to the training data size:
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CURRICULUM LEARNING

DIFFICULTY COMPETENCE

~ ventence Lengtn DIFFICULTY | [ COMPETENCE - Hhear

- Word Rarity - Root
Use sample only if:
difficulty(sample) = competence(model)
m MODEL TRAINER

The training examples are ranked according to their difficulty and the learner is
only allowed to use the top ¢(t) portion of them at time ¢.

SAMPLE
11v1S 1T4dOIN
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Experiments — Datasets

Dataset Train Dev Test
IWSLT-15 En»>Vi 133k 768 1268
IWSLT-16 Fr-En 224k 1080 1133

WMT-16 En+De 4.5m 3003 2999
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» RNN:
- 2-layer bidirectional LSTM encoder / 2-layer decoder (4 layers for WMT).
- 512 hidden units per layer and word embedding size

» [ransformer:

- 6-layer encoder/decoder.

- 2,048 units for the feed-forward layers and 512 word embedding size.
AMSGrad optimizer (similar to Adam) with learning rate 0.001

Label smoothing factor = 0.1
Batch size = 5,120 tokens (i.e., 256 for sentence length 20)
Beam width = 10 (using GNMT length normalization)

SPE vocabulary with 32,000 merge operations

vV vV VvV VvV Vv
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Experiments — Setup

Initial Competence:

Curriculum Length:

co = 0.01 — All models start training using the 1%
easlest training examples.

' — We train the baseline model without L

any curriculum, and com
training steps It takes to

final

5L

-U score.

oute the num
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Plain SL Linear SL Sqrt SR Linear SR Sqrt

IWSLT15 : En — Vi
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Fxperiments — Results
Plain SL Linear SL Sqrt SR Linear SR Sqrt
WMT16 : En — De
RNN Transformer
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Relative Time to Baseline Performance

1.0
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0.6
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0.2

0.0

Plain SL Linear SL Sqgrt SR Linear SR Sqrt

Transformer

IWSLT15: En — Vi
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Relative Time to Baseline Performance
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Conclusion — Our Approach Uellon sty

We propose a continuous curriculum learning regime (i.e., no binning), that is:

« Abstract & Extensible: Is a generalization of multiple existing approaches.

« Simple: Can be applied to existi

modification to t

ng NMT systems with only a small

nelr training da

a pipelines.

« Automatic: Has no hyper-parameters other than the curriculum length.

 Efficient: Reduces training time by up to /0%, while improving performance
by up to 2.2 BLEU.

Also, we perform experiments on both RNNs and [ransformers.

Prior work has not evaluated curriculum
learning applied to Transformers. -
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Thank You!

Questions?

e.a.platanios@cs.cmu.edu
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