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Unlabeled Data Labeled Data

Often easier to obtain

Program that classifies a 
person’s salary as high/low, 
given the city they live in and 
they job that they do

Labeled data are 
expensive

⇢

Unlabeled data are 
cheapDemographics
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Unlabeled Data Labeled Data

Often easier to obtain

Unlabeled data can give us 
information about the underlying 

distribution of the input data
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Semi-Supervised Learning



Program that classifies a person’s salary as high/low, 
given the city they live in and they job that they do

Two views of the input data

Can co-train two classifiers

Main Assumption / Intuition

Agreement / consistency of the two classifiers
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Co-Training



Program that classifies a person’s salary as high/low, 
given the city they live in and they job that they do

Two views of the input data

Can co-train two classifiers
Algorithm
1. Train weak predictors using small set of labeled data 
2. Make predictions with both over unlabeled data 
3. Add most confident predictions to training data 
4. Repeat
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Co-Training



Each bullet is a feature under each view

View #1: City View #2: Job

Tokyo Sushi Chef

London

Athens

Goldman Director

Parthenon Tour Guide

Archeology Intern

Baghdad
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Co-Training Intuition



Labeled 
data pairs

View #1: City View #2: Job

Tokyo Sushi Chef

London

Athens

Goldman Director

Parthenon Tour Guide

Archeology Intern

Baghdad
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Co-Training Intuition



View #1: City View #2: Job

Tokyo Sushi Chef

London

Athens

Goldman Director

Parthenon Tour Guide

Archeology Intern

Baghdad

Main Assumption
Agreement / consistency of the two classifiers
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Co-Training Intuition



Unlabeled 
data pairs

View #1: City View #2: Job

Tokyo Sushi Chef

London

Athens

Goldman Director

Parthenon Tour Guide

Archeology Intern

Baghdad
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View #1: City View #2: Job

Tokyo Sushi Chef

London

Athens

Goldman Director

Parthenon Tour Guide

Archeology Intern

Baghdad
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View #1: City View #2: Job

Tokyo Sushi Chef

London

Athens

Goldman Director

Parthenon Tour Guide

Archeology Intern

Baghdad

Knowing this
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Co-Training Intuition



Knowing this

Gives us training 
examples for this 

classifier

View #1: City View #2: Job

Tokyo Sushi Chef

London

Athens

Goldman Director

Parthenon Tour Guide

Archeology Intern

Baghdad
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Co-Training Intuition



View #1 View #2

Different class connected 
components are separated
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Co-Training Assumptions



We need cases when one classifier makes a confident 
prediction and the other does not. Different approaches 
make different assumptions in order to derive theoretical 
guarantees:

[Balcan, Blum and Yang, 2004] 
• Distribution expansion (weaker assumption) 
• Existence of an algorithm for learning from positive 

examples only

[Blum and Mitchell, 1998] 
• Independence of views given the true label 
• Existence of an algorithm for learning from noise
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Co-Training Assumptions



f

Y 2 {0, 1}

X ⇠ D

15

Never Ending Language Learning (NELL)



f

Y 2 {0, 1}

X ⇠ D

Is “Pittsburgh” a city?

“Pittsburgh”

Is city?
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Never Ending Language Learning (NELL)



Y 2 {0, 1}

X ⇠ D

f̂1 f̂2 · · ·Approximations f̂N

Orthographic features 
of the noun phrase

Context of the 
noun phrase

“Pittsburgh”

Is city?

Co-Training is 
core to NELL

15

Never Ending Language Learning (NELL)



In a practical real-life setting, such as NELL, our 
classifiers can make errors. If they are confident in 
wrong predictions these predictions are treated as 
training data and these errors can propagate and 
worsen the performance of the classifiers.

It would be great if we could estimate the accuracy of 
these classifiers using very few labeled data, or, even 
better, using only unlabeled data.
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Co-Training Issue



consistency

correctness

but not

Using only unlabeled data we can measure
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consistency

correctness

Does this 
implication hold?

If yes, under what 
conditions?
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Why only unlabeled data?

It is often impossible to have 
enough labeled data!

Never Ending Language Learning (NELL):

1. Huge knowledge-base with thousands of functions
2. Refined daily over several years
3. Constantly creating new functions automatically
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Outline
1. Useful Definitions 
2. Agreement Rates Method 
3. Graphical Model Approaches 

i. Error Estimation 
ii. Coupled Error Estimation 
iii. Hierarchical Coupled Error Estimation 

4. Experiments 
i. NELL Data Set 
ii. Brain Data Set 

5. Summary
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Definition

consistency

Agreement Rate: The probability over                       
of two function outputs agreeing.

P (X ) = D

aA = PD

 
\

i,j2A
i 6=j

[f̂i(X) = f̂j(X)]

!
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Definition

consistency

âA=
1

S

S
X

s=1

I
n

f̂i(Xs)= f̂j(Xs), 8i, j2A : i 6= j
o

Given unlabeled input data,                   , we observe the sample agreement rates:X1, . . . , XS
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Definition

correctness

Error Rate: The probability over                       of 
disagreeing with the correct output label. 

P (X ) = D
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Definition

⇢
EA Error Event

Error Rate eA = PD

 
\

i2A
[f̂i(X) 6= Y ]

!
correctness
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Definition

⇢
EA Error Event

Error Rate eA = PD

 
\

i2A
[f̂i(X) 6= Y ]

!
correctness

eA = PD

 
\

i2A
[f̂i(X) = f(X)]

!
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2. Agreement Rates Method
3. Graphical Model Approaches 

i. Error Estimation 
ii. Coupled Error Estimation 
iii. Hierarchical Coupled Error Estimation 

4. Experiments 
i. NELL Data Set 
ii. Brain Data Set 

5. Summary
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Agreement Rates Method
Induce word senses1Agreement rate between      and      :f̂i f̂j

a{i,j} = PD
�
E{i} \ E{j}

�
+ PD

�
Ē{i} \ Ē{j}

�



25

Agreement Rates Method
Induce word senses1Agreement rate between      and      :f̂i f̂j

a{i,j} = PD
�
E{i} \ E{j}

�
+ PD

�
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Agreement Rates Method
Induce word senses1Agreement rate between      and      :f̂i f̂j

a{i,j} = PD
�
E{i} \ E{j}

�
+ PD

�
Ē{i} \ Ē{j}

�

a{i,j} = 1� e{i} � e{j} + 2e{i,j}

Probability that 
both make an 

error

Probability 
that     makes 

an error
f̂i

Probability 
that     makes 

an error
f̂j
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Agreement Rates Method

a{i,j} = 1� e{i} � e{j} + 2e{i,j}

Agreement rates and error rates are related!
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Agreement Rates Method

a{i,j} = 1� e{i} � e{j} + 2e{i,j}

Agreement rates and error rates are related!

Independent errors

e{i}e{j}

3 functions that make independent errors:
(32) = 3 equations

3 unknowns

e{i} =
c±

�
1� 2â{j,k}

�

±2
�
1� 2â{j,k}

�

c =
q�

2â{1,2} � 1
� �

2â{1,3} � 1
� �

2â{2,3} � 1
�

where                       ,                                 with             and:i 2 {1, 2, 3} j, k 2 {1, 2, 3}\i j < k
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Agreement Rates Method
Independent errors Too strong assumption We do not make it

But we end up with more unknowns than equations

Constrained Optimization Problem

Objective FunctionAgreement Rates Equations

Constraints
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Agreement Rates Method
The objective function tries to minimize the dependence between the error rates:

Relaxes the independence assumption

c(e) =
X

i,j2{1,...,N}

✓
e{i,j} � e{i}e{j}

◆2

More constraints:

e{i,j}  min
�
e{i}, e{j}
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Agreement Rates Method
Induce word senses1Agreement rate for a bigger set of functions:

aA = PD

✓ \

i2A
Ei

◆
+ PD

✓ \

i2A
Ēi

◆
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Agreement Rates Method
Induce word senses1
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Agreement rate for a bigger set of functions:

aA = PD
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✓ \

i2A
Ēi

◆
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Agreement Rates Method
Induce word senses1

all are right{
Agreement rate for a bigger set of functions:

aA = PD

✓ \

i2A
Ei

◆
+ PD

✓ \

i2A
Ēi
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Agreement Rates Method
Induce word senses1Agreement rate for a bigger set of functions:

aA = PD

✓ \

i2A
Ei

◆
+ PD

✓ \

i2A
Ēi

◆

aA = eA + 1 +

|A|X

k=1


(�1)k

X

I✓A
|I|=k

eI

�
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Agreement Rates Method
Objective function:

Inequality constraints:

c(e) =
X

A:|A|�2

✓
eA �

Y

i2A
ei

◆2

eA  min
i2A

eA\i
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Outline
1. Useful Definitions 
2. Agreement Rates Method 
3. Graphical Model Approaches

i. Error Estimation
ii. Coupled Error Estimation
iii. Hierarchical Coupled Error Estimation

4. Experiments 
i. NELL Data Set 
ii. Brain Data Set 

5. Summary
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Error Estimation

We designed a generative process describing how 
our observations are generated.



33

p
↵p

�p
`i fij ej

↵e

�e

S

N

p ⇠ Beta(↵p,�p),

`i ⇠ Bernoulli(p), for i = 1, . . . , S,

ej ⇠ Beta(↵e,�e), for j = 1, . . . , N,

ˆfij =

(
`i , with probability 1� ej ,

1� `i , otherwise.

Error Estimation

Label Prior

True Labels

Error Rates

Actual Outputs
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Error Estimation
We use Gibbs sampling to perform inference:

P (p | ·) = Beta(↵p + �`,�p + S � �`),

P (`i | ·) / p`i(1� p)1�`i⇡i,

P (ej | ·) = Beta(↵e + �j ,�e + S � �j),

where:

�` =
SX

i=1

`i, �j =
SX

i=1

1{f̂ij 6=`i},

⇡i =
NY

j=1

e
1{f̂ij 6=`i}

j (1� ej)
1{f̂ij=`i} .

p
↵p

�p
`i fij ej

↵e

�e

S

N
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Error Estimation
We use Gibbs sampling to perform inference:

P (p | ·) = Beta(↵p + �`,�p + S � �`),

P (`i | ·) / p`i(1� p)1�`i⇡i,

P (ej | ·) = Beta(↵e + �j ,�e + S � �j),

where:

�` =
SX

i=1

`i, �j =
SX

i=1

1{f̂ij 6=`i},

⇡i =
NY

j=1

e
1{f̂ij 6=`i}

j (1� ej)
1{f̂ij=`i} .

Disagreement 
Rate

p
↵p

�p
`i fij ej

↵e

�e

S

N
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Y 2 {0, 1}

X ⇠ D

f̂1 f̂2 · · · f̂N

Is city?

Single Domain Settings So Far
We refer to different 

classification problems 
as different domains
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Y 2 2 {0, 1}

X ⇠ D

f̂2
1 f̂2

2 · · · f̂2
N

Y 1 2 {0, 1}

X ⇠ D

f̂1
1 f̂1

2 · · · f̂1
N

Y D2 {0, 1}

X ⇠ D

f̂D
1 f̂D

2 · · · f̂D
N…

Is city?Is animal? Is food?

What About Multiple Domains?

We have functions of the same parametric form using the 
same input data and features, answering different questions!
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Y 2 2 {0, 1}

X ⇠ D

f̂2
1 f̂2

2 · · · f̂2
N

Y 1 2 {0, 1}

X ⇠ D

f̂1
1 f̂1

2 · · · f̂1
N

Y D2 {0, 1}

X ⇠ D

f̂D
1 f̂D

2 · · · f̂D
N…

Is city?Is animal? Is food?

What About Multiple Domains?

We have functions of the same parametric form using the 
same input data and features, answering different questions!

We could potentially gain by sharing information 
across those accuracy estimation problems.

We can cluster the functions across domains.
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Y 2 2 {0, 1}

X ⇠ D

f̂2
1 f̂2

2 · · · f̂2
N

Y 1 2 {0, 1}

X ⇠ D

f̂1
1 f̂1

2 · · · f̂1
N

Y D2 {0, 1}

X ⇠ D

f̂D
1 f̂D

2 · · · f̂D
N…

Is city?Is animal? Is food?

What About Multiple Domains?

Coupled Error Estimation

We could potentially gain by sharing information 
across those accuracy estimation problems.

We can cluster the functions across domains.
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Y 2 2 {0, 1}

X ⇠ D

f̂2
1 f̂2

2 · · · f̂2
N

Y 1 2 {0, 1}

X ⇠ D

f̂1
1 f̂1

2 · · · f̂1
N

Y D2 {0, 1}

X ⇠ D

f̂D
1 f̂D

2 · · · f̂D
N…

Is city?Is animal? Is food?

What About Multiple Domains?

Hierarchical Coupled Error Estimation

We can further cluster error rates across functions 
to share even more information in a structured manner.
Note that this sharing of information can in general be 

very useful in the case of limited data.
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Outline
1. Useful Definitions 
2. Agreement Rates Method 
3. Graphical Model Approaches 

i. Error Estimation 
ii. Coupled Error Estimation 
iii. Hierarchical Coupled Error Estimation 

4. Experiments
i. NELL Data Set 
ii. Brain Data Set 

5. Summary
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Experiments

For the agreement rates method we used the IpOpt 3.11.9 interior point 
optimization solver and all the methods were implemented in Java.

We report the error mean absolute deviation (MADerror) between: 

• True error rates (estimated from labeled data) 
• Error rates estimates from unlabeled data 

and the label mean absolute deviation (MADlabel) between: 

• True labels 
• Predicted labels 

Note that this is simply the label accuracy.
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Experiments
NELL Data Set1

Brain Data Set2
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Experiments
NELL Data Set1

4 logistic regression classifiers using 
different features:

ADJ: Adjectives that occur with the NP 
CMC: Orthographic features of the NP 
CPL: Phrases that occur with the NP 
VERB: Verbs that appear with the NP

Task: Predict whether a noun phrase 
(NP) belongs to a category (e.g. city)

Category # Examples
animal 20,733

beverage 18,932
bird 19,263

bodypart 21,840
city 21,778

disease 21,827
drug 20,452
fish 19,162
food 19,566
fruit 18,911

muscle 21,606
person 21,700
protein 21,811
river 21,723

vegetable 18,826
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Experiments
NELL Data Set1

True error rates (estimated from labeled data)
Error rates estimated from unlabeled data

bodypart

Er
ro

r R
at

e

0.0

0.1

0.2

0.3

0.4

0.5

ADJ CMC CPL VERB

True Value
AR-2
EE
CEE
HCEE

bird

Er
ro

r R
at

e

0.0

0.1

0.2

0.3

0.4

0.5

ADJ CMC CPL VERB

beverage

Er
ro

r R
at

e

0.0

0.1

0.2

0.3

0.4

0.5

ADJ CMC CPL VERB

person

Er
ro

r R
at

e

0.0

0.1

0.2

0.3

0.4

0.5

ADJ CMC CPL VERB
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Experiments
NELL Data Set1

3 functions under independence assumption: 2.82x10-2.

x10-2 All Data Samples 10% of Data Samples
MADerror MADlabel MADerror MADlabel

MAJ - 5.60 - 5.47
AR-2
 

0.59 2.21 1.00 2.36
AR 0.66 2.20 0.70 2.36
EE 0.29 0.96 0.65 1.32

CEE 0.31 0.94 0.58 0.96
HCEE 0.31 0.96 0.31 0.95

4 functions without the independence assumption:
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Experiments
Brain Data Set2

11 logistic regression classifiers using a different 
representation of the text passage. For example:

• Number of letters in each word 
• Part of speech tag of each word 
• Emotions experienced by characters in the story 
• etc.

Task: Find which of two 40 second long story passages corresponds to an unlabeled 
40 second time series of fMRI neural activity

1,000 labeled samples 
for 11 brain regions
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Experiments
Brain Data Set2

True error rates (estimated from labeled data)
Error rates estimated from unlabeled data

Region #1

Er
ro

r R
at

e

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10 11

True Value
AR-2
EE
CEE
HCEE

Region #2
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0.5

1 2 3 4 5 6 7 8 9 10 11
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Experiments
Brain Data Set2

True error rates (estimated from labeled data)
Error rates estimated from unlabeled data

Region #4

Er
ro

r R
at

e

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10 11

Region #3
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ro

r R
at

e

0.0

0.1

0.2

0.3
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1 2 3 4 5 6 7 8 9 10 11

True Value
AR-2
EE
CEE
HCEE
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Experiments
Brain Data Set2

x10-2 All Data Samples 10% of Data Samples
MADerror MADlabel MADerror MADlabel

MAJ - 19.82 - 20.82
AR-2
 

5.14 18.67 5.84 20.14
AR 15.29 19.82 14.96 19.86
EE 6.77 17.23 20.20 20.03

CEE 4.07 17.51 4.69 17.42
HCEE 4.04 17.34 5.74 18.51
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Experiments
Brain Data Set2

x10-2 Pairwise Agreement Rates All Agreement Rates
NELL NELL 10% NELL NELL 10%

MADerror 0.59 1.00 0.66 0.70
MADlabel 2.21 2.36 2.20 2.36

Runs 4 times faster and performs as well on average!

8 classifiers
10 classifiers
15 classifiers ⇢ All agreement rates equations

Pairwise agreement 
rates equations

Rest of agreement 
rates equations

High order sample agreement 
rates are often bad estimates 
of the actual agreement rates
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Accuracy Estimation Summary
Estimating binary functions’ error 
rates using unlabeled data

4 Methods 
presented

1 formulated as an 
optimization problem 

and 3 graphical models

Highly accurate error 
rates estimates

on two very 
different data sets

Much higher than when making 
the independence assumption
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Accuracy Estimation Summary
Estimating binary functions’ error 
rates using unlabeled data

4 Methods 
presented

1 formulated as an 
optimization problem 

and 3 graphical models

Highly accurate error 
rates estimates

on two very 
different data sets

Much higher than when making 
the independence assumption

consistency

correctness
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Accuracy Estimation Summary
Estimating binary functions’ error 
rates using unlabeled data

Extend to non-boolean, 
discrete-valued and even 
real-valued functions

4 Methods 
presented

1 formulated as an 
optimization problem 

and 3 graphical models

Try using different 
objective functions 
for AR

Highly accurate error 
rates estimates

on two very 
different data sets

Much higher than when making 
the independence assumption

Use those error rates in the 
context of self-reflection
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Y 2 2 {0, 1}

X ⇠ D

f̂2
1 f̂2

2 · · · f̂2
N

Y 1 2 {0, 1}

X ⇠ D

f̂1
1 f̂1

2 · · · f̂1
N

Y D2 {0, 1}

X ⇠ D

f̂D
1 f̂D

2 · · · f̂D
N…

Is city?Is animal? Is food?

What About Multiple Domains?

Logic Error Estimation
What if there are constraints between the domains? What if 

“city” and “animal” are mutually exclusive, for example?
If two classifiers say that a NP is both a city and animal 
at the same time, then at least one of them has to be 

making a mistake
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Related Work
Disagreement rate as distance metric for model selection and regularization 
[Schuurmans et al., 2006; Bengio and Chapados, 2003]. 

Use of disagreement along with an ontology to estimate the error of the prediction 
vector for multi-class prediction, from unlabeled data, under an assumption of 
independence of the input features given the labeling [Balcan et. al., 2013]. 

Work at developing more robust semi-supervised learning algorithms by using the 
concept of agreement rates [Collins and Singer, 1999] or some task specific 
constraints [Chang et al., 2007]. 

Bounding error rates using the pairwise agreement rates only, under the assumption 
that the functions make independent errors [Dasgupta et. al., 2011]. 

Estimation of average error rate of two predictors using their disagreement rate 
[Madani et. al., 2004]. 

Estimation of per-function prediction risk, under the assumption that the true 
probability distribution of the output labels is known [Donmez et. al., 2010].



Questions?


