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EM Algorithm Review
We begin with an arbitrary choice for our parameters and 
iterate over the following steps, until convergence

E Step: Estimate the values of the unobserved variables 
using the current parameters

M Step: Use the observed variables along with our 
estimates of the unobserved variables from the previous 
E step to compute a maximum likelihood estimate for our 
parameters and update them

Guaranteed to find a local maximum



EM Algorithm Review

Guaranteed to find a local maximum

Given a joint distribution                    over observed variables     and 
latent variables    , parameterized by    , we want to maximize  
with respect to     

p(x, z | ✓) x

z ✓ p(x | ✓)
✓

Choose ✓oldInitialization

p(z | x,✓old)E Step Calculate

M Step Solve
✓

new
= argmax

✓

E
z|x,✓old

{log p(x, z | ✓)}

Convergence If not converged, set ✓old  ✓new



EM Algorithm Review

So far we have introduced EM as an algorithm for 
performing inference in cases where we have partially 
labeled data 

However, EM can be used in many more cases, including 
having no labeled data at all 

We are now going to consider one such cases as an 
example



Unsupervised EM Example
Let’s consider a case with no labeled data at all

Classification
e.g., Naive Bayes 

and Logistic 
Regression



Let’s consider a case with no labeled data at all

Classification Clustering
We want to  

learn the classes 
themselves

Unsupervised EM Example



Clustering

An instance of unsupervised learning

Examples
• Find interesting groups of patients in a hospital, faces in 
photos, webpages, etc. 

• Find interesting topics that different documents talk 
about based on word distributions (i.e., topic modeling)

A way of doing that is using mixtures of distributions



Mixture of Distributions
We model the joint distribution of our observations using a 
mixture of multiple distributions — each observation 
comes from one of those distributions and the 
distributions define our clusters

Discrete (and unobserved) random variable that 
specifies which distribution each observation came from

p(x1, . . . ,xN ) =
NY

n=1

KX

k=1

p(xn | zn)p(zn = k)

Cool Fact: That is what happens in Naive Bayes too



Gaussian Mixture Models (GMM)
We assume that each observation is generated in the 
following way: 

1. Randomly choose a Gaussian distribution according 
to 

2. Sample the observation from that Gaussian 
distribution — that Gaussian distribution defines 

p(zn = k)

p(xn | zn)

What does this look like and 
how do we formalize it?



GMM Example



GMM Formal Definition
Let’s assume we have     clusters. We define a variable 
indicating which cluster each observation belongs to 
using a one-hot vector

K

z = [0, 0, 0, . . . , 0, 1, 0, . . . , 0, 0]

             if and only if our observation belongs to cluster zk = 1 k

This will be the unobserved latent variable of our 
model, corresponding to what used to be a class for 
each observation (in classification problems)



We define the joint distribution as follows

Each cluster has its own Gaussian distribution and 
the exponent picks the one corresponding to the 
cluster to which the current observation belongs

GMM Formal Definition

p(xn, zn) = p(xn | zn)p(zn)

p(xn | znk = 1) = N (xn | µk,⌃k) )

p(xn | zn) =
KY

k=1

N (xn | µk,⌃k)
zn
k



We define the joint distribution as follows

probability of the 
corresponding 

cluster

p(xn, zn) = p(xn | zn)p(zn)

p(znk = 1) = ⇡k ) p(zn) =
KY

k=1

⇡
zn
k

k

GMM Formal Definition

because only one 
cluster can be 

“active” at any time

KX

k=1

⇡k = 1



What does our model look like?

GMM Formal Definition

p(x | ✓) =
NY

n=1

KX

k=1

⇡kN (xn | µk,⌃k)

✓ = {⇡,µ,⌃}
µ

⇡

⌃

z1

x

1
x

n

zn

…

…



xnµ

⇡

⌃

zn

N

The plate notation simply means that we have     
copies of the variables indexed by   

N
n

What does our model look like?

GMM Formal Definition

p(x | ✓) =
NY

n=1

KX

k=1

⇡kN (xn | µk,⌃k)

✓ = {⇡,µ,⌃}



Calculate the expected value of the cluster 
assignments

Remember these steps?

GMM - EM Algorithm
xnµ

⇡

⌃

zn

N

✓oldInitialization Choose

E Step

M Step Calculate the maximum likelihood estimate of 
all parameters given the expected value of the 
cluster assignments

Convergence If not converged, set ✓old  ✓new



Calculate

Remember these steps?

GMM - EM Algorithm
xnµ

⇡

⌃

zn

N

✓oldInitialization Choose

p(z | x,✓old)E Step

M Step Solve
✓

new
= argmax

✓

E
z|x,✓old

{log p(x, z | ✓)}

Convergence If not converged, set ✓old  ✓new



xnµ

⇡

⌃

zn

N

p(znk = 1 | xn,✓) =
p(znk = 1)p(xn | znk = 1)

PK
k0=1 p(z

n
k0 = 1)p(xn | znk0 = 1)

=
⇡kN (xn | µk,⌃k)PK

k0=1 ⇡k0N (xn | µk0 ,⌃k0)

GMM - E Step
Calculate p(z | x,✓old)

We can think of that quantity as the responsibility that 
the corresponding mixture component takes for 
“explaining” observation

x

n

r(znk )

�



xnµ

⇡

⌃

zn

N

GMM - M Step
Solve

✓

new
= argmax

✓

E
z|x,✓old

{log p(x, z | ✓)}

p(zn) =
KY

k=1

⇡
zn
k

kp(xn | zn) =
KY

k=1

N (xn | µk,⌃k)
zn
k⇢

p(x, z | ✓) =
NY

n=1

KY

k=1

[⇡kN (x

n | µk,⌃k)]
zn
k

log p(x, z | ✓) =
NX

n=1

KX

k=1

znk logN (x

n | µk,⌃k) + znk log ⇡k

E
z|x,✓old{log p(x, z | ✓)} =

NX

n=1

KX

k=1

r(znk ) logN (x

n | µk,⌃k) + r(znk ) log ⇡k



xnµ

⇡

⌃

zn

N

GMM - M Step
Solve

✓

new
= argmax

✓

E
z|x,✓old

{log p(x, z | ✓)}

✓

new
= argmax

✓

NX

n=1

KX

k=1

r(znk ) logN (x

n | µk,⌃k) + r(znk ) log ⇡k

�

f(✓) = L(✓)� �

 
KX

k=1

⇡k � 1

!

We also have a constraint and we will use a trick called 
a Lagrange multiplier to make sure it is satisfied while 
optimizing the likelihood. We will change our 
maximization objective to the following, for some  

Penalty for violating 
the constraint

⇢
L(✓)

KX

k=1

⇡k = 1



@f(✓)

@�
= 1�

KX

k=1

⇡k = 0 )
KX

k=1

⇡k = 1

f(✓) =
NX

n=1

KX

k=1

r(znk ) logN (x

n | µk,⌃k) + r(znk ) log ⇡k � �

 
KX

k=1

⇡k � 1

!
xnµ

⇡

⌃

zn

N

GMM - M Step

Solve for ⇡k

� =
KX

k=1

NX

n=1

r(znk ) = N ⇡k =
Nk

N

@f(✓)

@⇡k
=

PN
n=1 r(z

n
k )

⇡k
� � = 0 ) ⇡k =

PN
n=1 r(z

n
k )

�
=

Nk

�

Effective number of 
samples for which this 
mixture component is 

responsible for



f(✓) =
NX

n=1

KX

k=1

r(znk ) logN (x

n | µk,⌃k) + r(znk ) log ⇡k � �

 
KX

k=1

⇡k � 1

!
xnµ

⇡

⌃

zn

N

GMM - M Step

@f(✓)

@µk

=
NX

n=1

r(znk )⌃
�1(xn � µk) = 0 ) µk =

1

Nk

NX

n=1

r(znk )x
n

@f(✓)

@⌃k
=

1

2

NX

n=1

r(znk )⌃
�1
k

⇥
(xn � µk)(x

n � µk)
>⌃�1

k � 1
⇤
= 0 )

⌃k =
1

Nk

NX

n=1

r(znk )(x
n � µk)(x

n � µk)
>

Note that if the clusters were observed, then all 
the responsibilities would be indicator functions

Solve for       and µk ⌃k



GMM - EM Algorithm
xnµ

⇡

⌃

zn

N

r(znk ) =
⇡kN (xn | µk,⌃k)PK

k0=1 ⇡k0N (xn | µk0 ,⌃k0)
ComputeE Step

Nk =
NX

n=1

r(znk )

⇡k =
Nk

N
µk =

1

Nk

NX

n=1

r(znk )x
n

⌃k =
1

Nk

NX

n=1

r(znk )(x
n � µk)(x

n � µk)
>

M Step Compute

Convergence Iterate until the log-likelihood converges

Choose initial values for Initialization ✓ = {⇡,µ,⌃}



GMM Example - Data Set



GMM Example - Data Set



GMM Example - Iteration 1



GMM Example - Iteration 2



GMM Example - Iteration 5



GMM Example - Converged



GMM Example - Summary

Pretty good! However, initialization 
matters…remember that EM only 

guarantees a local maximum



GMM Example - Bad Initialization

However, there are ways 
to deal with that… 
e.g., k-means++



GMM Example - Number of Clusters

However, there are ways to deal 
with that too… 

e.g., nonparametric models



For GMMs we had the following form

probability of the 
corresponding 

cluster

p(xn, zn) = p(xn | zn)p(zn)

p(znk = 1) = ⇡k ) p(zn) =
KY

k=1

⇡
zn
k

k

because only one 
cluster can be 

“active” at any time

KX

k=1

⇡k = 1

A Small Variation to GMM



What if we change it to this?

A Small Variation to GMM

p(xn, zn) = p(xn | zn)p(zn)

p(znk = 1) = 1{n=argminn0 kxn0�µkk2} ) p(zn) =
KY

k=1

⇡
zn
k

k

The expectation is now simply equal to this indicator 
and the E step of EM simply sets the cluster of an 
observation to the cluster with mean closest to that 

observation



If we also fix the covariance matrix to be the identity 
matrix, the we get the following algorithm

Initialize the cluster means arbitrarilyInitialization

Compute Nk =
NX

n=1

r(znk )µk =
1

Nk

NX

n=1

r(znk )x
nM Step

Convergence Iterate until the means converge

ComputeE Step r(znk ) = 1{n=argminn0 kxn0�µkk2}

A Small Variation to GMM



If we also fix the covariance matrix to be the identity 
matrix, the we get the following algorithm

k-Means Algorithm

Initialize the cluster means arbitrarilyInitialization

Compute Nk =
NX

n=1

r(znk )µk =
1

Nk

NX

n=1

r(znk )x
nM Step

Convergence Iterate until the means converge

ComputeE Step r(znk ) = 1{n=argminn0 kxn0�µkk2}

This is just another way to view the famous 
k-means clustering algorithm from an EM perspective



EM Algorithm Recap

Guaranteed to find a local maximum

Given a joint distribution                    over observed variables     and 
latent variables    , parameterized by    , we want to maximize  
with respect to     

p(x, z | ✓) x

z ✓ p(x | ✓)
✓

Choose ✓oldInitialization

p(z | x,✓old)E Step Calculate

M Step Solve
✓

new
= argmax

✓

E
z|x,✓old

{log p(x, z | ✓)}

Convergence If not converged, set ✓old  ✓new



EM Algorithm Recap

Another approximate inference method for 
probabilistic models is variational inference and 
it is actually a generalization of EM

EM can be used in any probabilistic model and 
not just Bayesian networks — undirected graphical 
models are an example



Bayesian Network Structure Learning

Learning structure is not that easy 

• In general requires lots of data (can overfit easily) 
• Huge search space — we use priors to constrain it

But there exist some algorithms for certain special cases 
(e.g., Chow-Liu for tree structures)



Chow-Liu Algorithm
Finds the “best” tree-structured Bayesian network
We have the following random variables

X1 X2 XN…
Let the true distribution be

p(X) = p(X1, . . . , XN )

Let our tree-structured approximate distribution be
q(X) = q(X1, . . . , XN )

Chow-Liu finds the           that minimizes KL divergence 
with     

q(X)
p(X)

KL(p(X) || q(X)) ,
X

x

p(X = x) log

p(X = x)

q(X = x)



Chow-Liu Algorithm
Notice that

only term that depends on edges

KL(p(X) || q(X)) =

X

x

p(x) log
p(x)

q(x)

=

X

x

p(x) log p(x)�
X

x

p(x) log q(x)

= �H(X)�
NX

i=1

X

x

p(x) log p(xi | Pa(xi))

= �H(X)�
NX

i=1

X

x

p(x) log p(xi) +

NX

i=1

X

x

p(x) log
p(xi)

p(xi | Pa(xi))

= �H(X) +

NX

i=1

H(Xi)�
NX

i=1

MI(Xi,Pa(Xi))

| {z }

q(x) =
NY

i=1

p(xi | Pa(xi))

Tree Structure



Chow-Liu Algorithm
All we need to do is find the tree that maximizes the 
sum of the mutual information over each edge

NX

i=1

MI(Xi,Pa(Xi)) =

NX

i=1

X

x

p(xi,Pa(xi)) log
p(xi,Pa(xi))

p(xi)p(Pa(xi))

Algorithm
1. For each pair of variables         use observations to estimate         

,         , and             , and calculate the mutual information 
2. Compute the maximum spanning tree over all variables using 

the mutual information of each pair as the corresponding edge 
weight 

3. Add arrows to the edges to form a directed acyclic graph (DAG) 
4. Learn the conditional probability tables (CPT) for this graph

A,B p(A)
p(B) p(A,B)



Chow-Liu Example
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Chow-Liu Example
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…

Y

X1 X2 XN

Naive Bayes

Tree Augmented
Naive Bayes
Using Chow-Liu to  
learn the tree structure

…

Y

X1 X2 XN



Bayesian Networks Recap
Bayesian Networks
• Model conditional independence assumptions
• Model the joint probability distribution of variables 
•  Combine prior knowledge over: 

-  Dependencies 
-  Parameter values

Inference
• NP-hard in general 
•  Has closed-form solution for some graphs 
• Approximate methods exist (e.g., Monte Carlo methods)
Learning
• Easy for fully observed data with known graph structure 
•  Using EM for partially observed data with known graph structure 
•  Structure learning is generally hard (possible with Chow-Liu for tree-

structured networks) 
•  Structure learning very hard with partially observed data



Questions?


