
Gaussian Mixture Models
and Structure Learning in

Bayesian Networks
Anthony Platanios

EM Algorithm Review
We begin with an arbitrary choice for our parameters and
iterate over the following steps, until convergence

E Step: Estimate the values of the unobserved variables
using the current parameters

M Step: Use the observed variables along with our
estimates of the unobserved variables from the previous
E step to compute a maximum likelihood estimate for our
parameters and update them

Guaranteed to find a local maximum

EM Algorithm Review

Guaranteed to find a local maximum

Given a joint distribution over observed variables and
latent variables , parameterized by , we want to maximize
with respect to

p(x, z | ✓) x

z ✓ p(x | ✓)
✓

Choose ✓oldInitialization

p(z | x,✓old)E Step Calculate

M Step Solve
✓

new
= argmax

✓

E
z|x,✓old

{log p(x, z | ✓)}

Convergence If not converged, set ✓old ✓new

EM Algorithm Review

So far we have introduced EM as an algorithm for
performing inference in cases where we have partially
labeled data

However, EM can be used in many more cases, including
having no labeled data at all

We are now going to consider one such cases as an
example

Unsupervised EM Example
Let’s consider a case with no labeled data at all

Classification
e.g., Naive Bayes

and Logistic
Regression

Let’s consider a case with no labeled data at all

Classification Clustering
We want to

learn the classes
themselves

Unsupervised EM Example

Clustering

An instance of unsupervised learning

Examples
• Find interesting groups of patients in a hospital, faces in
photos, webpages, etc.

• Find interesting topics that different documents talk
about based on word distributions (i.e., topic modeling)

A way of doing that is using mixtures of distributions

Mixture of Distributions
We model the joint distribution of our observations using a
mixture of multiple distributions — each observation
comes from one of those distributions and the
distributions define our clusters

Discrete (and unobserved) random variable that
specifies which distribution each observation came from

p(x1, . . . ,xN) =
NY

n=1

KX

k=1

p(xn | zn)p(zn = k)

Cool Fact: That is what happens in Naive Bayes too

Gaussian Mixture Models (GMM)
We assume that each observation is generated in the
following way:

1. Randomly choose a Gaussian distribution according
to

2. Sample the observation from that Gaussian
distribution — that Gaussian distribution defines

p(zn = k)

p(xn | zn)

What does this look like and
how do we formalize it?

GMM Example

GMM Formal Definition
Let’s assume we have clusters. We define a variable
indicating which cluster each observation belongs to
using a one-hot vector

K

z = [0, 0, 0, . . . , 0, 1, 0, . . . , 0, 0]

 if and only if our observation belongs to cluster zk = 1 k

This will be the unobserved latent variable of our
model, corresponding to what used to be a class for
each observation (in classification problems)

We define the joint distribution as follows

Each cluster has its own Gaussian distribution and
the exponent picks the one corresponding to the
cluster to which the current observation belongs

GMM Formal Definition

p(xn, zn) = p(xn | zn)p(zn)

p(xn | znk = 1) = N (xn | µk,⌃k))

p(xn | zn) =
KY

k=1

N (xn | µk,⌃k)
zn
k

We define the joint distribution as follows

probability of the
corresponding

cluster

p(xn, zn) = p(xn | zn)p(zn)

p(znk = 1) = ⇡k) p(zn) =
KY

k=1

⇡
zn
k

k

GMM Formal Definition

because only one
cluster can be

“active” at any time

KX

k=1

⇡k = 1

What does our model look like?

GMM Formal Definition

p(x | ✓) =
NY

n=1

KX

k=1

⇡kN (xn | µk,⌃k)

✓ = {⇡,µ,⌃}
µ

⇡

⌃

z1

x

1
x

n

zn

…

…

xnµ

⇡

⌃

zn

N

The plate notation simply means that we have
copies of the variables indexed by

N
n

What does our model look like?

GMM Formal Definition

p(x | ✓) =
NY

n=1

KX

k=1

⇡kN (xn | µk,⌃k)

✓ = {⇡,µ,⌃}

Calculate the expected value of the cluster
assignments

Remember these steps?

GMM - EM Algorithm
xnµ

⇡

⌃

zn

N

✓oldInitialization Choose

E Step

M Step Calculate the maximum likelihood estimate of
all parameters given the expected value of the
cluster assignments

Convergence If not converged, set ✓old ✓new

Calculate

Remember these steps?

GMM - EM Algorithm
xnµ

⇡

⌃

zn

N

✓oldInitialization Choose

p(z | x,✓old)E Step

M Step Solve
✓

new
= argmax

✓

E
z|x,✓old

{log p(x, z | ✓)}

Convergence If not converged, set ✓old ✓new

xnµ

⇡

⌃

zn

N

p(znk = 1 | xn,✓) =
p(znk = 1)p(xn | znk = 1)

PK
k0=1 p(z

n
k0 = 1)p(xn | znk0 = 1)

=
⇡kN (xn | µk,⌃k)PK

k0=1 ⇡k0N (xn | µk0 ,⌃k0)

GMM - E Step
Calculate p(z | x,✓old)

We can think of that quantity as the responsibility that
the corresponding mixture component takes for
“explaining” observation

x

n

r(znk)

�

xnµ

⇡

⌃

zn

N

GMM - M Step
Solve

✓

new
= argmax

✓

E
z|x,✓old

{log p(x, z | ✓)}

p(zn) =
KY

k=1

⇡
zn
k

kp(xn | zn) =
KY

k=1

N (xn | µk,⌃k)
zn
k⇢

p(x, z | ✓) =
NY

n=1

KY

k=1

[⇡kN (x

n | µk,⌃k)]
zn
k

log p(x, z | ✓) =
NX

n=1

KX

k=1

znk logN (x

n | µk,⌃k) + znk log ⇡k

E
z|x,✓old{log p(x, z | ✓)} =

NX

n=1

KX

k=1

r(znk) logN (x

n | µk,⌃k) + r(znk) log ⇡k

xnµ

⇡

⌃

zn

N

GMM - M Step
Solve

✓

new
= argmax

✓

E
z|x,✓old

{log p(x, z | ✓)}

✓

new
= argmax

✓

NX

n=1

KX

k=1

r(znk) logN (x

n | µk,⌃k) + r(znk) log ⇡k

�

f(✓) = L(✓)� �

KX

k=1

⇡k � 1

!

We also have a constraint and we will use a trick called
a Lagrange multiplier to make sure it is satisfied while
optimizing the likelihood. We will change our
maximization objective to the following, for some

Penalty for violating
the constraint

⇢
L(✓)

KX

k=1

⇡k = 1

@f(✓)

@�
= 1�

KX

k=1

⇡k = 0)
KX

k=1

⇡k = 1

f(✓) =
NX

n=1

KX

k=1

r(znk) logN (x

n | µk,⌃k) + r(znk) log ⇡k � �

KX

k=1

⇡k � 1

!
xnµ

⇡

⌃

zn

N

GMM - M Step

Solve for ⇡k

� =
KX

k=1

NX

n=1

r(znk) = N ⇡k =
Nk

N

@f(✓)

@⇡k
=

PN
n=1 r(z

n
k)

⇡k
� � = 0) ⇡k =

PN
n=1 r(z

n
k)

�
=

Nk

�

Effective number of
samples for which this
mixture component is

responsible for

f(✓) =
NX

n=1

KX

k=1

r(znk) logN (x

n | µk,⌃k) + r(znk) log ⇡k � �

KX

k=1

⇡k � 1

!
xnµ

⇡

⌃

zn

N

GMM - M Step

@f(✓)

@µk

=
NX

n=1

r(znk)⌃
�1(xn � µk) = 0) µk =

1

Nk

NX

n=1

r(znk)x
n

@f(✓)

@⌃k
=

1

2

NX

n=1

r(znk)⌃
�1
k

⇥
(xn � µk)(x

n � µk)
>⌃�1

k � 1
⇤
= 0)

⌃k =
1

Nk

NX

n=1

r(znk)(x
n � µk)(x

n � µk)
>

Note that if the clusters were observed, then all
the responsibilities would be indicator functions

Solve for and µk ⌃k

GMM - EM Algorithm
xnµ

⇡

⌃

zn

N

r(znk) =
⇡kN (xn | µk,⌃k)PK

k0=1 ⇡k0N (xn | µk0 ,⌃k0)
ComputeE Step

Nk =
NX

n=1

r(znk)

⇡k =
Nk

N
µk =

1

Nk

NX

n=1

r(znk)x
n

⌃k =
1

Nk

NX

n=1

r(znk)(x
n � µk)(x

n � µk)
>

M Step Compute

Convergence Iterate until the log-likelihood converges

Choose initial values for Initialization ✓ = {⇡,µ,⌃}

GMM Example - Data Set

GMM Example - Data Set

GMM Example - Iteration 1

GMM Example - Iteration 2

GMM Example - Iteration 5

GMM Example - Converged

GMM Example - Summary

Pretty good! However, initialization
matters…remember that EM only

guarantees a local maximum

GMM Example - Bad Initialization

However, there are ways
to deal with that…
e.g., k-means++

GMM Example - Number of Clusters

However, there are ways to deal
with that too…

e.g., nonparametric models

For GMMs we had the following form

probability of the
corresponding

cluster

p(xn, zn) = p(xn | zn)p(zn)

p(znk = 1) = ⇡k) p(zn) =
KY

k=1

⇡
zn
k

k

because only one
cluster can be

“active” at any time

KX

k=1

⇡k = 1

A Small Variation to GMM

What if we change it to this?

A Small Variation to GMM

p(xn, zn) = p(xn | zn)p(zn)

p(znk = 1) = 1{n=argminn0 kxn0�µkk2}) p(zn) =
KY

k=1

⇡
zn
k

k

The expectation is now simply equal to this indicator
and the E step of EM simply sets the cluster of an
observation to the cluster with mean closest to that

observation

If we also fix the covariance matrix to be the identity
matrix, the we get the following algorithm

Initialize the cluster means arbitrarilyInitialization

Compute Nk =
NX

n=1

r(znk)µk =
1

Nk

NX

n=1

r(znk)x
nM Step

Convergence Iterate until the means converge

ComputeE Step r(znk) = 1{n=argminn0 kxn0�µkk2}

A Small Variation to GMM

If we also fix the covariance matrix to be the identity
matrix, the we get the following algorithm

k-Means Algorithm

Initialize the cluster means arbitrarilyInitialization

Compute Nk =
NX

n=1

r(znk)µk =
1

Nk

NX

n=1

r(znk)x
nM Step

Convergence Iterate until the means converge

ComputeE Step r(znk) = 1{n=argminn0 kxn0�µkk2}

This is just another way to view the famous
k-means clustering algorithm from an EM perspective

EM Algorithm Recap

Guaranteed to find a local maximum

Given a joint distribution over observed variables and
latent variables , parameterized by , we want to maximize
with respect to

p(x, z | ✓) x

z ✓ p(x | ✓)
✓

Choose ✓oldInitialization

p(z | x,✓old)E Step Calculate

M Step Solve
✓

new
= argmax

✓

E
z|x,✓old

{log p(x, z | ✓)}

Convergence If not converged, set ✓old ✓new

EM Algorithm Recap

Another approximate inference method for
probabilistic models is variational inference and
it is actually a generalization of EM

EM can be used in any probabilistic model and
not just Bayesian networks — undirected graphical
models are an example

Bayesian Network Structure Learning

Learning structure is not that easy

• In general requires lots of data (can overfit easily)
• Huge search space — we use priors to constrain it

But there exist some algorithms for certain special cases
(e.g., Chow-Liu for tree structures)

Chow-Liu Algorithm
Finds the “best” tree-structured Bayesian network
We have the following random variables

X1 X2 XN…
Let the true distribution be

p(X) = p(X1, . . . , XN)

Let our tree-structured approximate distribution be
q(X) = q(X1, . . . , XN)

Chow-Liu finds the that minimizes KL divergence
with

q(X)
p(X)

KL(p(X) || q(X)) ,
X

x

p(X = x) log

p(X = x)

q(X = x)

Chow-Liu Algorithm
Notice that

only term that depends on edges

KL(p(X) || q(X)) =

X

x

p(x) log
p(x)

q(x)

=

X

x

p(x) log p(x)�
X

x

p(x) log q(x)

= �H(X)�
NX

i=1

X

x

p(x) log p(xi | Pa(xi))

= �H(X)�
NX

i=1

X

x

p(x) log p(xi) +

NX

i=1

X

x

p(x) log
p(xi)

p(xi | Pa(xi))

= �H(X) +

NX

i=1

H(Xi)�
NX

i=1

MI(Xi,Pa(Xi))

| {z }

q(x) =
NY

i=1

p(xi | Pa(xi))

Tree Structure

Chow-Liu Algorithm
All we need to do is find the tree that maximizes the
sum of the mutual information over each edge

NX

i=1

MI(Xi,Pa(Xi)) =

NX

i=1

X

x

p(xi,Pa(xi)) log
p(xi,Pa(xi))

p(xi)p(Pa(xi))

Algorithm
1. For each pair of variables use observations to estimate

, , and , and calculate the mutual information
2. Compute the maximum spanning tree over all variables using

the mutual information of each pair as the corresponding edge
weight

3. Add arrows to the edges to form a directed acyclic graph (DAG)
4. Learn the conditional probability tables (CPT) for this graph

A,B p(A)
p(B) p(A,B)

Chow-Liu Example

A

B

C

D
E

F
G

1/20

1/81/7

1/5
1/5

1/9 1/7

1/15

1/6 1/8

1/11

1/9

Chow-Liu Example

A

B

C

D
E

F
G

1/20

1/81/7

1/5
1/5

1/9 1/7

1/15

1/6 1/8

1/11

1/9

Chow-Liu Example

A

B

C

D
E

F
G

1/20

1/81/7

1/5
1/5

1/9 1/7

1/15

1/6 1/8

1/11

1/9

Chow-Liu Example

A

B

C

D
E

F
G

1/20

1/81/7

1/5
1/5

1/9 1/7

1/15

1/6 1/8

1/11

1/9

Chow-Liu Example

A

B

C

D
E

F
G

1/20

1/81/7

1/5
1/5

1/9 1/7

1/15

1/6 1/8

1/11

1/9

Chow-Liu Example

A

B

C

D
E

F
G

1/20

1/81/7

1/5
1/5

1/9 1/7

1/15

1/6 1/8

1/11

1/9

Chow-Liu Example

A

B

C

D
E

F
G

1/20

1/81/7

1/5
1/5

1/9 1/7

1/15

1/6 1/8

1/11

1/9

Chow-Liu Example

A

B

C

D
E

F
G

1/20

1/81/7

1/5
1/5

1/9 1/7

1/15

1/6 1/8

1/11

1/9

Chow-Liu Example

A

B

C

D
E

F
G

1/20

1/81/7

1/5
1/5

1/9 1/7

1/15

1/6 1/8

1/11

1/9

Chow-Liu Example

A

B

C

D
E

F
G

1/20

1/81/7

1/5
1/5

1/9 1/7

1/15

1/6 1/8

1/11

1/9

Chow-Liu Example

A

B

C

D
E

F
G

1/20

1/81/7

1/5
1/5

1/9 1/7

1/15

1/6 1/8

1/11

1/9

Chow-Liu Example

A

B

C

D
E

F
G

Chow-Liu Example

A

B

C

D
E

F
G

…

Y

X1 X2 XN

Naive Bayes

Tree Augmented
Naive Bayes
Using Chow-Liu to
learn the tree structure

…

Y

X1 X2 XN

Bayesian Networks Recap
Bayesian Networks
• Model conditional independence assumptions
• Model the joint probability distribution of variables
• Combine prior knowledge over:

- Dependencies
- Parameter values

Inference
• NP-hard in general
• Has closed-form solution for some graphs
• Approximate methods exist (e.g., Monte Carlo methods)
Learning
• Easy for fully observed data with known graph structure
• Using EM for partially observed data with known graph structure
• Structure learning is generally hard (possible with Chow-Liu for tree-

structured networks)
• Structure learning very hard with partially observed data

Questions?

