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Logistic Regression
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Logistic Regression Decision Boundary

Linear classification boundary, but why?
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Training Logistic Regression

We use maximum condition likelihood estimation (MCLE):

But how do we solve this?

Convex Optimization



Gradient Descent

Problem: arg mui)n f(w)
terative Solution:  w + w — né?f(w)
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Step Size Selection

Too Small Just Right Too Big



Step Size Selection

0
Exact Line search: n* = argmin f <,w — {)i:))>

n=0
Most often we cannot obtain a closed-form solution!

Backtracking Line Search: Choose 0 < 8 < 1,0 < a < 0.5
and ny > 0 and while:

seft: Ni+1 = BNy

We start with a big step size and keep decreasing it until the update
generates a sufficient decrease for our function. We want out next iterate
to beat the criterion value of a linear approximation of our function at the
current point. The above inequality is called the Armijo rule and it is often
used in combination with a curvature condition. Check the wikipedia
page on Wolfe conditions for more informations.



https://en.wikipedia.org/wiki/Wolfe_conditions

Other Convex Optimization Methods

There are other convex optimization methods that use
even second derivative information, such as Newton’s

method. Use the inverse Hessian as the step size

(makes use of curvature information)

It the Hessian is too expensive to compute,
people might also use quasi-Newton methods
such as the well known LBFGS algorithm.

But, what is convexity?



Convexity

Local Minima

Non-convex Convex

Vw,u € dom(f) and V8 € |0, 1]:
fl0w + (1 —0)u) <Of(w) + (1 —0)f(u)



Operations that Preserve Convexity

Nonnegative linear combinations: If f1,..., /m are convex,
thenay f1 + -+ am fm IS CcOnvex forany ag, ..., amy, > 0.

Affine compositions: If f is convex, then
g(w) = f(Aw + b) is also convex.

Pointwise maximum: If fi,.-.., fm are convex, then
then max{fi,..., fm} iS also convex.




Back to Logistic Regression

Sum of affine functions and convex functions.
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Logistic Regression with a Prior
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More generally we call this L2 regularization:
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Regularization in Optimization

More generally we have Lp regularization:

arg min f(w) + Allw7

L1 is a special case, frequently used in practice to induce
sparsity in the solution:

arg min f(w) + Allwl[y



Stochastic Gradient Descent

We can randomly sample terms of that sum and get an
estimate of the gradient in order to speed things up
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